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Introduction

In previous lectures, we dealt with simplest kind of t
statistic, the 1-sample t test for a single mean.
This test statistic is actually just the simplest special case
of an entire class of test statistics.
In this lecture, we examine perhaps the best known of the t
statistics, the 2-Sample Independent Sample t test for
comparing the means of two groups.
Some of the things we learned about the 1-sample t will
generalize directly to this new situation.
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Introduction

The 2-sample t test is used to assess whether two different
populations have the same mean.
The most popular use for the test is in the context of the
2-group, Experimental-Control group design, in which a
group of subjects is randomly divided into two groups, one
of which receives the experimental treatment, the other a
control (often some kind of placebo).
Let µ1 be the mean of the Experimental group, and µ3 the
mean of the control group. Then the statistical null
hypothesis is

H0 : µ1 = µ2

Notice that this hypothesis is true, if and only if
µ1 − µ2 = 0, so in a sense it is a hypothesis about the mean
difference.
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The 2-Sample Statistic

We are interested in whether or not µ1 − µ2 is equal to
zero. So we take independent samples of size n1 and n2,
and compute sample means M1 and M2.
We then examine M1−M2 and see if it is “different enough
from zero to be statistically significant.”
But how do we do that?
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The 2-Sample Statistic
A 2-Sample Z

Although the equations are more complicated, the basic
idea is the same.
The numerator includes two sample statistics, but
ultimately reduces them to a single number, M1 −M2.
We standardize the mean difference M1 −M2 by
subtracting its null-hypothesized mean, and dividing by its
standard error.
It turns out that the standard error of M1 −M2 is given by
the following formula

σM1−M2 =

√
σ21
n1

+
σ22
n2

(1)

Notice that, in the formula, groups can come from
populations with unequal variances, and the groups can
have unequal sample sizes.
The quantity in Equation 1 is called the standard error of
the difference between means.
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The 2-Sample Statistic
A 2-Sample Z

If we knew the two population variances, we could
construct a Z-statistic of the form

Z =
M1 −M2√
σ2

1
n1

+
σ2

2
n2

(2)

This Z-statistic would be the two-sample equivalent of the
Z-statistic we saw earlier.
But in practice we don’t know the two population
variances! So what can we do?
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The 2-Sample Statistic
Substituting Sample Variances

We could simply substitute the two sample variances for
their population counterparts in the above formula.
This would give us the following Z-statistic.

Z =
M1 −M2√
s21
n1

+
s22
n2

(3)

This statistic would have a distribution that gets closer and
closer to a standard normal distribution as the sample sizes
get larger and larger.
However, it would not have a t distribution at small
samples.
Is there some way we could modify the statistic so that it
would have a t distribution? Read on . . .

James H. Steiger The Two-Sample Independent Sample t Test



Introduction
The 2-Sample Statistic

Computing the Two-Sample t
Building an R Routine

Confidence Intervals on the Mean Difference
Statistical Assumptions and Robustness

Dealing with Assumption Violations

The 2-Sample Statistic
Getting to a t-Statistic

Advanced statistical theory tells us that simply
substituting sample variances in Equation 2 above will not
be enough to get us to a t-distribution, unless n1 = n2 .
However, it turns out that making two simple
modifications in the Z-statistic formula will result in a
statistic that does have a t distribution.
These two modifications occur in the denominator of the
formula.
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The 2-Sample Statistic
Getting to a t-Statistic

First, let us incorporate an assumption of equal variances,
that is, that both experimental populations have the same
variance.
If we are using an experimental-control design, this
amounts to an assumption that the experimental effect acts
additively, that is, scores in the experimental group have,
in effect, a constant added to them. (Remember from the
early days of the course that adding a constant to a group
of scores does not change the variance of those scores.)

James H. Steiger The Two-Sample Independent Sample t Test



Introduction
The 2-Sample Statistic

Computing the Two-Sample t
Building an R Routine

Confidence Intervals on the Mean Difference
Statistical Assumptions and Robustness

Dealing with Assumption Violations

The 2-Sample Statistic
Getting to a t-Statistic

What would our original Z-statistic look like if we assumed
equal variances?
One way of approaching this is to simply drop the
subscript on σ21 and σ22, since they are now assumed to be
the same σ2.
We’d get

Z =
M1 −M2√
σ2

n1
+ σ2

n2

(4)

But note, there is a common σ2 that can be factored out,
resulting in the equation below.

Z =
M1 −M2√(
1
n1

+ 1
n2

)
σ2

(5)
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The 2-Sample Statistic
Getting to a t-Statistic

Now, of course, we are no more likely to know the common
σ2 than we would be to know the individual group
variances if they were not equal.
We have to estimate them. So I simply substitute a
symbol, σ̂2 indicating that an estimate of σ2 will be used in
place of the actual value.

Z =
M1 −M2√(
1
n1

+ 1
n2

)
σ̂2

(6)

But which estimate should we use?
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The 2-Sample Statistic
Getting to a t-Statistic

There are many possible estimates of σ2 that we could
construct from the two sample variances.
Remember, we are assuming each of the two sample
variances is estimating the same quantity.
It turns out that one particular estimate, if substituted for
σ2, yields a statistic that has an exact Student t
distribution.
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The 2-Sample Statistic
Getting to a t-Statistic

This estimate goes by a variety of names.
It is sometimes called “the pooled unbiased estimator,” and
also sometimes called “Mean Square Within” or “Mean
Square Error.” Gravetter and Walnau call it Mean Square
Within.
I’ll give the specific formula for two groups

σ̂2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(7)

Note that this can also be written

σ̂2 =
SS1 + SS2
df1 + df2

(8)

where SS1 stands for the sum of squared deviations inside
group 1, and SS2 stands for the sum of squared deviations
inside group 2, and dfj is equal to nj − 1 for each group.
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The 2-Sample Statistic
Getting to a t-Statistic

Note that σ̂2 is a weighted average of the two sample
variances. Each variances is weighted by its degrees of
freedom divided by the total degrees of freedom.
This version of the formula is

σ̂2 =

(
df1

df1 + df2

)
s21 +

(
df2

df1 + df2

)
s22 (9)

Notice that σ̂2 is a weighted average of the two variances in
which the weights are positive and add up to 1.
Consequently, it must be somewhere between the two s2

values.
What would the formula reduce to if the two sample sizes
are equal, and consequently both df are the same? (C.P.)
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The 2-Sample Statistic
Getting to a t-Statistic

That’s right! If the two df are the same, then

σ̂2 =
s21 + s22

2
(10)
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The General Formula
The Equal-n Formula

Computing the 2-Sample t
The General Formula

The equations we gave above yield a general formula that
works whether or not the sample sizes are equal for the two
groups. First compute

σ̂2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

Then plug your obtained value of σ̂2 into

tn1+n2−2 =
M1 −M2√(
1
n1

+ 1
n2

)
σ̂2

(11)

Note that the resulting t-statistic has n1 + n2− 2 degrees of
freedom.
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Computing the 2-Sample t
An Example

Example (2-Sample t-Test)

A travel agent wants to examine the notion that people lose
equal amounts of money in casinos in Reno than in Las Vegas.

She takes a sample of 20 clients who visited Las Vegas, and
found that they lost an average of $1435.65 with a standard
deviation of $265.14. On the other hand, 24 clients who visited
Reno lost an average of $1354.34 with a standard deviation of
$249.98.

Is this a 1-tailed or a 2-tailed test? Compute the t-statistic and
test the null hypothesis with α = 0.05.

(Continued on next slide . . . )
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Example (2-Sample t-Test)

The null hypothesis is that µ1 = µ2, and the test is 2-tailed. We
first compute σ̂2 as

σ̂2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

=
(20− 1)265.142 + (24− 1)249.982

24 + 20− 2

=
(19)70299.22 + (23)62490.00

42
= 66022.7

(Continued on next slide . . . )
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Example (2-Sample t-Test)

Next, we substitute the obtained value of 66022.7 for σ̂2 in the
formula below.

tn1+n2−2 =
M1 −M2√(
1
n1

+ 1
n2

)
σ̂2

=
1435.65− 1354.34√(

1
20 + 1

24

)
66022.7

=
81.31√(

24+20
24×20

)
66022.7

=
81.31√

6052.081
t42 = 1.045181

(Continued on next slide . . . )
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Example (2-Sample t-Test)

From our knowledge of normal distribution rejection points, and
the fact that those for the t are always larger than the normal
distribution, we know that this obtained value of the t-statistic
is not significant.

The Z-statistic would have a critical value of 1.96, and the t
will be somewhat higher. How much higher? We can compute
it with R as

> qt(0.975,42)

[1] 2.018082
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Computing the 2-Sample t
The Equal-n Formula

We have already seen that, when the sample sizes are
equal, the formula for σ̂2 simplifies substantially.
Suppose both groups have the same sample size, n. Then
the t-statistic becomes

t2(n−1) =
M1 −M2√(

1
n + 1

n

)
σ̂2

=
M1 −M2√(

2
n

) s21+s22
2

=
M1 −M2√

s21+s
2
2

n

(12)
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Building an R Routine

Computing the t-statistic with two unequal sized samples is
hard work.
This is what computers are for.
So let’s construct an R function to compute the 2-sample t,
and then we may never have to compute it “by hand”again!

James H. Steiger The Two-Sample Independent Sample t Test



Introduction
The 2-Sample Statistic

Computing the Two-Sample t
Building an R Routine

Confidence Intervals on the Mean Difference
Statistical Assumptions and Robustness

Dealing with Assumption Violations

Building an R Routine

We begin by giving names to all the quantities required to
compute the statistic and the critical values. They are
m.1,m.2,s.1,s.2,n.1,n.2,alpha,tails

We tell R with the following structural form that
t.2.sample is a function to compute the two-sample t
statistic. Note that we have used the syntax to establish
the default α of 0.05 and default number of tails of 2.

> t.2.sample <- function(m.1,m.2,s.1,s.2,n.1,

+ n.2,alpha=0.05,tails=2){

+ }

All we need to do is put the code to calculate the t inside
the braces, and properly return the output.
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Building an R Routine

First we add the code to compute σ̂2.

> t.2.sample <- function(m.1,m.2,s.1,s.2,n.1,

+ n.2,alpha=0.05,tails=2){

+ # compute sigma.hat.squared

+ df <- n.1 + n.2 -2

+ sigma.hat.squared <-( (n.1-1)*s.1^2 +(n.2-1)*s.2^2 )/df

+

+ }
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Building an R Routine

Next we add the code to compute the t.

> t.2.sample <- function(m.1,m.2,s.1,s.2,n.1,

+ n.2,alpha=0.05,tails=2){

+ # compute sigma.hat.squared

+ df <- n.1 + n.2 -2

+ sigma.hat.squared <-( (n.1-1)*s.1^2 +(n.2-1)*s.2^2 )/df

+ # compute t

+ t <- (m.1 - m.2) / sqrt((1/n.1 + 1/n.2)*sigma.hat.squared)

+ return(t)

+ }

Before continuing, we input the data from the example we
looked at earlier. I call the function with the parameter
names given explicitly, to help reduce the chance of an
error. We get the same value.

> t.2.sample(m.1=1435.65,m.2=1354.34,s.1=265.14,s.2=249.98,

+ n.1=20,n.2=24,alpha=0.05,tails=2)

[1] 1.045181
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Building an R Routine

Next we add the code to compute the critical value from
the t.

> t.2.sample <- function(m.1,m.2,s.1,s.2,n.1,

+ n.2,alpha=0.05,tails=2){

+ # compute sigma.hat.squared

+ df <- n.1 + n.2 -2

+ sigma.hat.squared <-( (n.1-1)*s.1^2 +(n.2-1)*s.2^2 )/df

+ # compute t

+ t <- (m.1 - m.2) / sqrt((1/n.1 + 1/n.2)*sigma.hat.squared)

+ # compute critical value

+ if(tails == -1) p <- alpha

+ if(tails == 1) p <- 1-alpha

+ if(tails == 2) p <- c(alpha/2,1 - alpha/2)

+ crit <- qt(p,df)

+ # create a list of named quantities and return it

+ res <- list(t.statistic = t, df = df, alpha = alpha,

+ critical.t.values = crit)

+ return(res)

+ }
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Building an R Routine

Now, when we run the test problem, we get the full output.

> # test problem

> t.2.sample(m.1=1435.65,m.2=1354.34,s.1=265.14,s.2=249.98,

+ n.1=20,n.2=24,alpha=0.05,tails=2)

$t.statistic

[1] 1.045181

$df

[1] 42

$alpha

[1] 0.05

$critical.t.values

[1] -2.018082 2.018082
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Confidence Intervals on the Mean Difference

Just as with the 1-Sample t, we may wish to construct a
confidence interval on the quantity of interest.
With the 1-Sample test, the “quantity of interest” was µ,
the mean of the single population.
In the 2-Sample situation, the quantity of interest is
µ1 − µ2, the difference between the two population means.
In an experimental-control group design, this mean
difference represents the actual effect of the treatment.
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Confidence Intervals on the Mean Difference

The formula for the 1− α confidence interval is

M1 −M2 ± t1−α/2,n1+n2−2
√

(1/n1 + 1/n2)σ̂2 (13)

Note that the left part of the formula is simply the
numerator of the t statistic, and the right side of the
formula is a critical value of t multiplied by the
denominator of the t-statistic.
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Introduction

The statistical assumptions of the classic two-sample
independent sample t are

1 Independence of observations. Each observation is
independent. The classic formula for the sampling variance
of the sample mean, σ2/n, is based on this assumption.

2 Normality. The distribution of the populations is assumed
to be normal.

3 Homogeneity of variances. The populations are assumed to
have equal variances.

We need to consider, in turn,
1 How violations of these assumptions affect performance of

the t-test.
2 What methods are available to produce reasonable

inferential performance when assumptions are violated.
3 How to detect violations of assumptions.
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Effect of Violations
Independence

If the n observations are independent, then M has a
sampling variance of σ2/n. Otherwise, the sampling
variance may be quite different.
Since most classic tests assume the formula σ2/n is correct,
they can be seriously in error if this assumption is violated.
Exactly what the affect of the error is depends on the
precise nature of the dependency.
If the pattern of dependency is known, it may be possible
to correct for it, using linear combination theory as taught
in Psychology 310.
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Independence
Normality
Homogeneity of Variances

Effect of Violations
Normality

A key fact about the normal distribution is that the sample
mean and sample variance of a set of observations taken
randomly from a normal population are independent.
This independence of the mean and variance are crucial in
the derivation of Student’s t distribution.
When populations are not normal, this lack of
independence can lead to poor performance of the t-test.

James H. Steiger The Two-Sample Independent Sample t Test



Introduction
The 2-Sample Statistic

Computing the Two-Sample t
Building an R Routine

Confidence Intervals on the Mean Difference
Statistical Assumptions and Robustness

Dealing with Assumption Violations

Independence
Normality
Homogeneity of Variances

Effect of Violations
Normality

Violations of normality can occur in several distinct ways.
The general shape of the distribution can be skewed, in
some cases for obvious reasons related to the nature of the
measurement process.
There can be contamination by outliers. These extreme and
unusual observations lead to the distribution having tails
that are much longer than seen with a normal distribution.
Yet, if the contamination probability is small, it may be
difficult to diagnose outlier problems when they occur. For
example, are the outliers the result of:

1 A mixture of two or more processes (or subgroups) that
characterize the population of interest?

2 A random measurement error?
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Effect of Violations
Normality

High skewness or kurtosis can lead to Type I error rates
that are either much higher or much lower than the
nominal rates.
Contamination by outliers can lead to a significant loss of
power when the null hypothesis is false.
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As we saw earlier, the denominator of the 2-Sample
t-statistic explicitly assumes equal variances.
Recall that, with independent samples, the variance of
M1 −M2 is

Var(M1 −M2) =
σ21
n1

+
σ22
n2

(14)

The t statistic replaces this formula with one that assumes
equal variances, i.e.,

Var(M1 −M2) =

(
1

n1
+

1

n2

)
σ2 (15)

and then substitutes the estimate σ̂2 for σ2, where

σ̂2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(16)
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Notice that, in the preceding formula, we are essentially
substituting the (weighted) average of the two variances for
each variance in the formula for the sampling variance of
M1 −M2.
If the assumption of equal variances is correct, the
resulting formula will be a consistent estimate of the
correct quantity.
What will the effect be if the assumption of equal variances
is incorrect?
How can we approximate the impact of a violation of the
equal variances assumption on the true Type I error rate of
the t-test when the null hypothesis is true?
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One simplified approach would be two assume that there is
no sampling error in the sample variances, i.e., that s21 = σ21
and s22 = σ22, and measure the result of the violation of
assumptions.
For example, suppose σ21 = 40, and σ22 = 10, while n1 = 10
and n2 = 20. What will the approximate effect on the true
α?
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Using our simplified assumption that the sample variances
would perfectly estimate the population variances, let’s
compute the ratio of the obtained denominator to the
correct denominator.
First, let’s compute σ̂2.

σ̂2 =
(10− 1)40 + (20− 1)(10)

10 + 20− 2

=
360 + 190

28
= 19.64286
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The obtained denominator is then√
V̂ar(M1 −M2) =

√(
1

n1
+

1

n2

)
σ̂2

=

√(
1

10
+

1

20

)
19.64286

=
√

2.946429

= 1.716516
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However, the correct denominator is√
40

10
+

10

20
=
√

4.5 = 2.12132 (17)

The obtained denominator is considerably smaller than it
should be. So the t statistic will, in general, be larger in
value than it should be, and will therefore reject more often
than it should.
The critical value of the t statistic with 28 degrees of
freedom is

> qt(.975,28)

[1] 2.048407
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Since obtained values of the t statistic are, in effect,
expanded by the ratio 2.12132/1.71516, the true α can be
approximated as the area outside absolute t values of

> 1.71516/2.12132 * qt(.975,28)

[1] 1.656207

This is

> 2*pt(1.71516/2.12132 * qt(.025,28),28 )

[1] 0.1088459
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The above estimate of .109 was obtained with a simplifying
assumption, and is an approximation.
An alternative approach is Monte Carlo simulation. I ran a
t-test 10,000 times under the above conditions and the
Type I error rate was .1155.
This confirms that the true α is more than twice as large as
the nominal α of .05.
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Using the approaches just demonstrated, we can verify the
following general principles):

1 If the two sample sizes are equal, the difference between
nominal and true α will be minimal, unless sample sizes are
really small and the variance ratio really large.

2 If the two sample sizes are unequal, and the variances are
inversely related to sample sizes, then the true α will
substantially exceed the nominal α.

3 If the two sample sizes are unequal, and the variances are
directly related to sample sizes, then the true α will be
substantially lower than the nominal α.
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Dealing with Non-Normality

When data show a recognized non-normal distribution, one
has recourse to several options:

1 Do nothing. If violation of normality is not severe, the t-test
may be reasonably robust.

2 Transform the data. This seems especially justifiable if the
data have a similar non-normal shape. With certain kinds
of shapes, certain transformations will convert the
distributions to be closer to normality. However, this
approach is generally not recommended, for a variety of
reasons.

3 Trim the data. By trimming a percentage of the more
extreme cases from the data, the skewness and kurtosis may
be brought more into line with those of a normal
distribution.

4 Use a non-parametric procedure. Tests for equality of means
that do not assume normality are available. However, they
generally assume that the two samples have equal
distributions, not that they simply have equal means (or
medians).
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Dealing with Non-Normality

Although the “jury is still out” on these matters, a number
of authors writing on robustness in social science statistical
journals (e.g., Algina, Keselman, Lix, Wilcox) have
promoted the use of trimmed means.
In the preceding lecture module, we described a single
sample test and confidence interval using a trimmed mean.
One could examine the data and then choose a trimming
proportion γ, but many authors recommend using a fixed
value of γ = 0.20 to avoid the general problems connected
with post hoc analysis.
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Dealing with Unequal Variances
The Welch Test

With unequal variances, a standard approach,
recommended in many textbooks, is to employ the Welch
test, which can be generalized to the analysis of variance
setting.
In the case of the two-sample t statistic, the Welch test
employs a modified test statistic,

t′ =
M1 −M2√
s21
n1

+
s22
n2

(18)

and modified degrees of freedom

df ′ =
(s21/n1 + s22/n2)

2

s41
n2

1(n1−1)
+

s42
n2

2(n2−1)

(19)
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Dealing with Unequal Variances
The Welch Test

With unequal variances, a standard approach,
recommended in many textbooks, is to employ the Welch
test, which can be generalized to the analysis of variance
setting.
In the case of the two-sample t statistic, the Welch test
employs a modified test statistic,

t′ =
M1 −M2√
s21
n1

+
s22
n2

(18)

and modified degrees of freedom

df ′ =
(s21/n1 + s22/n2)

2

s41
n2

1(n1−1)
+

s42
n2

2(n2−1)

(19)
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General Testing Strategy
The Welch Test

How should one employ the Welch test?
Some authors advocate a sequential strategy, in which one
first tests for equal variances. If the equal variance test
rejects, employ the Welch test, otherwise employ the
standard t-test.
This is, at its foundation, an “Accept-Support” strategy, in
which one employs the standard test if the null hypothesis
is not rejected.
The fact that tests on variances have low power
compromises this strategy.
As a result, some authors advocate always doing a Welch
test.
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