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Introduction

Introduction

o In several previous lectures, we studied, in detail, the
characteristics of the Z-statistic for comparing a mean with
a null-hypothesized value.

@ In the process, we learned a number of general principles
about hypothesis testing, power, and the factors affecting
power and the sample size n needed to achieve it.

o However, it turns out the Z statistic itself is virtually never
used in practice.

e Why? Because the population standard deviation o is not
known, anymore than the population mean is.

@ So what do we do?
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Introduction

Introduction

@ One obvious strategy is to substitute an estimate of ¢ in
place of o. The likely candidate is s, the sample standard
deviation we studied earlier in the course.

e This would yield a modified Z statistic

Z dified = 0
moa J e
S/\/ﬁ

e What do you think will happen if we do that?
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Thinking Intuitively about a Modified Z Statistic

The Modified Z Statistic

Thinking Intuitively

o The original Z statistic modified M by subtracting a
constant, then dividing by a constant.

@ The only thing in the Z statistic that would vary over
repeated samples is M, the sample mean.

o This means that the distribution of Z has to be the same
shape as the distribution of M.
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Thinking Intuitively about a Modified Z Statistic

The Modified Z Statistic

Thinking Intuitively

o The modified Z statistic has a sample quantity in its
denominator that varies over repeated samples along with
M.

e So now, instead of only one thing varying, you have two.

o It turns out that, as n gets larger and larger, this matters
less and less, because s starts acting more and more like
the constant that it is estimating.

e In fact, it was known back around 1900 that, as n goes to
infinity, the modified Z statistic’s distribution got closer
and closer to the distribution of the original Z statistic.

e What people didn’t know was precisely how to characterize
the performance of the modified Z statistic at small sample
sizes.
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ossett and the “Student” t Some History
Basic Facts about the ¢t Distribution

W.S. Gossett and the “Student” ¢t

Some History

o W.S. Gossett was a statistician working for the Guinness
brewery when he derived the exact distribution of Z,04ified
under some specific conditions.

o This was seen as something of a landmark development by
the statistical community.

@ Due to some issues regarding confidentiality and conflict of
interest, Gossett was writing under the pen name of
“Student” when he published his work, and so the modified
Z statistic became known as “Student’s ¢ statistic” in his
honor.

@ The distribution of the statistic became known as
“Student’s ¢ distribution,” and has many applications
beyond the simple 1-sample test we are reviewing here.
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W.S. Gossett and the “Student” t Some History
Basic Facts about the ¢t Distribution

Basic Facts about the ¢ Distribution

e What are some of the basic facts about the Student ¢
distribution?

o To begin with, it has a single parameter, called the degrees
of freedom, which we shall abbreviate as df.

o The ¢ distribution is symmetric around a mean of zero.

e For the 1-sample test, df = n — 1. Later, we will see a more
general formula for df.

o At small df, the ¢ distribution has a shape much like the
standard normal, but with larger variability.

o As df increases, the ¢ distribution gets closer and closer to
the standard normal distribution in shape.

o Consequently, critical values are somewhat larger than for
the normal distribution.

e For example, suppose n is only 10, so df = 9. The 0.975
quantile is 2.262, as compared with 1.96 for the normal
distribution.

o On the other hand, if n = 100, and df = 99, the 0.975
quantile is 1.984, only slightly larger than the normal
distribution value.
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W.S. Gossett and the “Student” t Some History
Basic Facts about the ¢t Distribution

Basic Facts about the ¢ Distribution

@ On the next slide, there is a picture comparing the
probability density of a standard normal distribution with
that of Student’s ¢ distributions with 5 (red) and with 20
(blue) degrees of freedom.

o Comparison of this slide with Figure 9.1 from the
Gravetter-Walnau textbook on the following slide shows
that the Gravetter-Walnau figure is not an accurate
representation of the actual densities. Figure 9.1 seems to
show equal differences in the heights of the Z, ¢5, and to9
distributions at 0, when in fact the density of the t9g is
much closer to the Z than to the ¢5 distribution.
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Basic Facts about the ¢t Distribution

Basic Facts about the ¢ Distribution

Comparison of Normal, t(5), and t(20) Distributions

Comparison of the Normal, t(5), and t(20) Distributions

— Normal(0,1)
)

120)

()
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Basic Facts about the ¢ Distribution
GW Figure 9.1

Figure 9.1

Distributions of the ¢ statistic for different values of degrees of freedom are
compared to a normal Z-score distribution. Like the normal distribution, ¢
distributions are bell-shaped and symmetrical and have a mean of zero. However, t
distributions have more variability, indicated by the flatter and more spread-out
shape. The larger the value of df is, the more closely the t distribution approximates
anormal distribution.

Normal distribution
t distribution, df = 20
t distribution, off = &




Critical Values of the Student ¢ Distribution

Critical Values of the ¢t Distribution

o When using the ¢ distribution for statistical testing, we
need critical values (rejection points), just as with the
normal distribution.

e With the normal distribution, there are two parameters (u
and ), but all normal distributions have the same shape,
so critical values for any normal distribution can be
computed from the critical values for the standard normal.

e For example, the 0.975 quantile of the standard normal is

1.96, and the 0.975 quantile for any other normal

distribution may be found by multiplying 1.96 by that

distribution’s ¢ and then adding that distribution’s pu.

On the other hand, the ¢ distribution changes its shape as

the df parameter changes.

o Consequently, ¢ distribution tables give only a few key

quantiles as a function of degrees of freedom.

Gravetter & Walnau, Table 9.1 is an example of a section

from a typical ¢ distribution table.
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Critical Values of the ¢ Distribution
From Tables of the ¢ Distribution (GW Table 9.1)

A portion of the t-distribution table. The numbers in the table are the values of t that separate the tail
fram the main body of the distribution. Proportions for one or two tails are listed at the top of the table,
and df values for t are listed in the first column.

Proportion in One Tail
0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined

df 0.50 0.20 0.10 0.05 0.02 0.01
i 1.000 3.078 6314 12,708 31821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1638 2.353 3182 4.541 5.841
& 0.741 1.533 2,132 27176 3747 4604
5 0.727 1476 2,015 2571 3.365 4.032
6 0718 1.440 1.943 2447 3.143 3707




Critical Values of the Student ¢ Distribution

Critical Values of the ¢ Distribution
Using the R Functions

@ A superior alternative to the use of tables is to use the R
functions for the ¢ distribution.

@ In keeping with standard R nomenclature, the key
functions are pt and qt.

o For example, Table 9.1 on the preceding slide gives the
upper tail probability of 0.01 for a ¢ value of 3.365 with 5
degrees of freedom.

@ An upper tail probability of 0.01 corresponds to the 0.99
quantile of the distribution, which is easily calculated with
qt below.

> qt(0.99,5)

[1] 3.36493
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Critical Values of the Student ¢ Distribution

Critical Values of the ¢t Distribution

Let’s Practice!

o Let’s practice computing some critical values.

o Remember the rule. If the test is 2-tailed, half the «
probability goes in each tail, and so if o = 0.05, 2-tailed,
the upper critical value is at the 0.975 quantile.

o If the test is 1-tailed, all the o goes in the rejection region,
so if the rejection region is in the upper tail, and o = 0.05,
then the critical value would be at the 0.95 quantile.

@ You also need to remember that the degrees of freedom for
the 1-sample ¢ statistic are df =n — 1.
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Critical Values of the Student ¢ Distribution

Critical Values of the ¢t Distribution

Let’s Practice!

Example (Critical Value Calculation: Example 01)

Suppose you want to test the null hypothesis that p = 100 with
a sample of size n = 25, and an « of 0.05. What will the critical
value(s) for the ¢ statistic be?

(Answer on next slide . ..)
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Critical Values of the Student ¢ Distribution

Critical Values of the ¢t Distribution

Let’s Practice!

Example (C ue Calculation: Example 01 ... continued)
Suppose you want to test the null hypothesis that p = 100 with
a sample of size n = 25, and an « of 0.05. What will the critical
value(s) for the ¢ statistic be?

Answer. This is a 2-tailed test, so half the a is in each tail.
With 0.025 probability in the upper tail, the upper critical
value will be at the 0.975 quantile. The lower critical value will
be its symmetric opposite at the 0.025 quantile. Degrees of
freedom are df =n —1=25— 1= 24. Using R, we get

> upper.critical.value <- qt(0.975,24)

> lower.critical.value <- qt(0.025,24)
> upper.critical.value

[1] 2.063899
> lower.critical.value
[1] -2.063899

Table B.2 in the textbook gives the upper critical value as 2.064.
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Critical Values of the Student ¢ Distribution

Critical Values of the ¢t Distribution

Let’s Practice!

Example (Critical Value Calculation: Example 02)

Suppose you want to test the null hypothesis that p < 100 with
a sample of size n = 60, and an « of 0.01. What will the critical
value(s) for the ¢ statistic be?

(Answer on next slide . ..)

James H. Steiger The Student ¢t Distribution and its Use



Critical Values of the Student ¢ Distribution

Critical Values of the ¢t Distribution

Let’s Practice!

Example (Critical Value Calculation: Example 02 ... continued)

Suppose you want to test the null hypothesis that © < 100 with
a sample of size n = 60, and an « of 0.01. What will the critical
value(s) for the ¢ statistic be?

Answer. This is a 1-tailed test, with a rejection region in the
upper tail, so all the « is in the upper tail. With 0.01
probability in the upper tail, the upper critical value will be at
the 0.99 quantile. Degrees of freedom are

df =n—1=60—1=59. Using R, we get

> critical.value <- qt(0.99,59)
> critical.value

[1] 2.391229
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The 1-Sample t Test

The 1-Sample t Test

o The 1-Sample t statistic is

b M=

@ The notation ¢,_1 reminds us that the ¢ statistic has n — 1
degrees of freedom.

e To perform the ¢ test, we simply compute the statistic and
see if it “beats” its critical value.

@ A couple of examples should suffice.

(2)
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The 1-Sample t Test

The 1-Sample t Test

Let’s Practice!

Example (The 1-Sample ¢ Test: Example 01)

Suppose you want to test the null hypothesis that p = 100 with
a sample of size n = 25, and an « of 0.05. You observe a sample
mean of 107.23 and a sample standard deviation of 14.87.
Perform the 1-sample ¢ test.

(Answer on next slide ... )
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The 1-Sample t Test

The 1-Sample t Test

Let’s Practice!

inued)

Suppose you want to test the null hypothesis that p = 100 with
a sample of size n = 25, and an « of 0.05. You observe a sample
mean of 107.23 and a sample standard deviation of 14.87.
Perform the 1-sample ¢ test.

Answer. This is a 2-tailed test, and we already calculated the
critical values to be +2.064. The test statistic itself can be
easily computed in R as

> t.observed <- (107.23 - 100)/(14.87/sqrt(25))
> t.observed
[1] 2.431069

Since the observed value of ¢ exceeds the positive critical value,
the null hypothesis is “rejected at the 0.05 significance level,
2-tailed.”
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The 1-Sample t Test

The 1-Sample t Test

Let’s Practice!

Example (The 1-Sample ¢ Test: Example 02)

Suppose you want to test the null hypothesis that p < 100 with
a sample of size n = 101, and an « of 0.01. You observe a
sample mean of 104.11 and a sample standard deviation of
16.04. Perform the 1-sample t test.

(Answer on next slide ... )
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The 1-Sample t Test

The 1-Sample t Test

Let’s Practice!

Example (The 1-Sample ¢ Test: Example 02 ... continued)

Suppose you want to test the null hypothesis that p < 100 with
a sample of size n = 101, and an « of 0.01. You observe a
sample mean of 104.11 and a sample standard deviation of
16.04. Perform the 1-sample ¢ test.

Answer. This is a 1-tailed test, and the critical value is in the
upper tail at the 0.99 quantile. The degrees of freedom are
df =101 — 1 = 100. The critical value is

> critical.value <- qt(0.99,100)
> critical.value

[1] 2.364217

(Continued on next slide .. .)
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The 1-Sample t Test

The 1-Sample t Test

Let’s Practice!

Example (The 1-Sample ¢ Test: Example 02 ... continued)

The test statistic itself can be easily computed in R as

> t.observed <- (104.11 - 100)/(16.04/sqrt(101))
> t.observed

[1] 2.575124

Since the observed value of t exceeds the positive critical value,
the null hypothesis is “rejected at the 0.01 significance level,
1-tailed.”
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Estimating Cohen’s d
Estimating r“, the Proportion of Variance Accounted F

Measures of Effect Size

Introduction

In the context of the 1-sample ¢, Gravetter & Walnau mention
two measures of effect size, the estimated standardized effect
size, and 72, the proportion of variance accounted for by
knowing the sample mean.

We'll review each of these briefly in the next sections.
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Estimating Cohen’s d
Estimating , the Proportion of Variance Accounted F

Measures of Effect Size

Estimating F

o Recall that the standardized effect size, g, is defined as

B, =R (3)

and is the amount by which the null hypothesis is wrong,
in standard deviation units.
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Estimating Cohen’s d
Estimating r“, the Proportion of Variance Accounted F

Measures of Effect Size

Estimating F

o When o is not known, we estimate E; from our data as

. M —
By=d=——"10 (4)

s

The “hat” in the above equations means “estimate of.”
o Note that, since

M — o
s/\/n
M —
_ \/ﬁ Ho
= \/EES

it immediately follows that the estimate of Es; may be
directly calculated from the ¢ statistic and the sample size

t =

as
A 5 t t
ES:d:%:W (5)
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Estimating Cohen’s d
Estimating <, the Proportion of Variance Accounted

Measures of Effect Size

Estimating 1>

the Proportion of Variance Accounted For

o Another well known measure of effect size is r2.

o 72 has a very general meaning in statistics when nested
models are compared — it is the proportional reduction in
the sum of squared errors of a model made by adding
complexity to the model.

@ Suppose we had a statistical model that the mean of the
population from which a sample of 5 scores was taken is 0.
That’s all we know about the 5 scores. Our model, in other
words, is that u = po = 0.

e Statistical theory tells us that, if we were to have to
“estimate” these 5 scores from our model, prior to seeing
them, the best we could do, in the long run, would be to
use the population mean. So suppose we do that.
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Estimating Cohen’s d
Estimatin , the Proportion of Variance Accounted

Measures of Effect Size

Estimating 1>

the Proportion of Variance Accounted For

@ Suppose our 5 scores were 1,2,3,45.

o Remember that the null hypotheis is © = po = 0.

o If the null hypothesis is true, our best estimate, in the long
run, is to estimate each of the 5 scores as 0.

In that case, what would be the sum of squared errors?
Let’s let R compute that for us.
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Measures of Effect

Estimating 1>

the Proportion of Variance Accounted F

Below, we see that the sum of squared errors is 55 using p = 0
as our model.

> X <= 1:5
>mu_0 <- 0
> X.hat <- rep(mu_0,5)
> E <- X - X.hat
> E.squared <- E"2
> demo_0 <- data.frame(X,X.hat,E,E.squared)
> demo_0

X X.hat E E.squared
11 01 1
22 02 4
33 03 9
4 4 04 16
55 05 25

> 85_0 <- sum(E.squared)




Estimating Cohen’s d
Estimatin , the Proportion of Variance Accounted

Measures of Effect Size

Estimating 1>

the Proportion of Variance Accounted For

o Now suppose we consider that perhaps p isn’t 0, and the
null hypothesis is false.

o Using that as our model, we use the data to guess just
what the value of u actually is. We use the sample mean.
Since the scores are 1,2,3,4,5, the sample mean is 3.

@ Suppose we now use 4 = 3 as our model, and “estimate”
each score as the sample mean.

o In that case, what would be the sum of squared errors?

Again, let’s let R do it for us.
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Measures of Effect

Estimating 1>

the Proportion of Variance Accounted F

By foresaking the null hypothesis and letting the data speak, we
reduce the sum of squared errors from 55 to 10.

> X <- 1:5
> mu <- mean(X)
> X.hat <- rep(mu,5)
> E <- X - X.hat
> E.squared <- E"2
> demo_1 <- data.frame(X,X.hat,E,E.squared)
> demo_1

X X.hat E E.squared
11 3 -2 4
22 3 -1 1
33 3 0 0
4 4 3 1 1
55 3 2 4

> 8S_1 <- sum(E.squared)




Estimating Cohen’s d
Estimatin , the Proportion of Variance Accounted

Measures of Effect Size

Estimating 1>

the Proportion of Variance Accounted For

o With Hy as our “model” our sum of squared errors was 55.
o With H; as our “model” our sum of squared errors is only

10.
@ The proportional reduction in the errors is

55—10 45
2
= ———=—=0.81818... 6
" 55 55 (6)

@ As the sample mean moves away from pg, this value will

approach 1, because as pg becomes more false, the more we

can gain by estimating p and using that estimate.
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Estimating Cohen’s d
Estimating <, the Proportion of Variance Accounted

Measures of Effect Size

Calculating r? Directly from the ¢ Statistic

o Exploiting some well known algebraic relationships, it is
possible to prove that

2 t2
g "

r

o Thus, if given a 1-sample t statistic and the df, we can
compute 2 directly.
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Estimating <, the Proportion of Variance Accounted

Measures of Effect Size

Calculating r? Directly from the ¢ Statistic

e We can demonstrate that with the data set we’ve been
using

[11 12345

> t <= sqrt(5) * mean(X) / sd(X)
>t

[1] 4.242641

> df <- 4
> £72/(¢72 + df)

[1] 0.8181818
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