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This article presents confidence interval methods for improving on the standard F tests in the
balanced, completely between-subjects, fixed-effects analysis of variance. Exact confidence
intervals for omnibus effect size measures, such as �2 and the root-mean-square standardized
effect, provide all the information in the traditional hypothesis test and more. They allow one
to test simultaneously whether overall effects are (a) zero (the traditional test), (b) trivial (do
not exceed some small value), or (c) nontrivial (definitely exceed some minimal level). For
situations in which single-degree-of-freedom contrasts are of primary interest, exact confi-
dence interval methods for contrast effect size measures such as the contrast correlation are
also provided.

The analysis of variance (ANOVA) remains one of the
most commonly used methods of statistical analysis in the
behavioral sciences. Most ANOVAs, especially in explor-
atory studies, report an omnibus F test of the hypothesis that
a main effect, interaction, or simple main effect is precisely
zero. In recent years, a number of authors (Cohen, 1994;
Rosnow & Rosenthal, 1996; Schmidt, 1996; Schmidt &
Hunter, 1997; Serlin & Lapsley, 1993; Steiger & Fouladi,
1997) have sharply questioned the efficacy of tests of this
“nil” hypothesis. Several of these critiques have concen-
trated on ways that the nil hypothesis test fails to deliver the
information that the typical behavioral scientist wants.
However, a number of the articles have also suggested,
more or less specifically, replacements for or extensions of
the null hypothesis test that would deliver much more useful
information.

The suggestions have developed along several closely
related lines, including the following:

1. Eliminate the emphasis on omnibus tests, with
attention instead on focused contrasts that answer
specific research questions, along with calculation
of point estimates and approximate confidence in-

terval estimates for some correlational measures of
effect size (e.g., Rosenthal, Rosnow, & Rubin,
2000; Rosnow & Rosenthal, 1996).

2. Calculate exact confidence interval estimates of
measures of standardized effect size, using an it-
erative procedure (e.g., Smithson, 2001; Steiger &
Fouladi, 1997).

3. Perform tests of a statistical null hypothesis other
than that of no difference or zero effect (e.g.,
Serlin & Lapsley, 1993).

As proponents of the first suggestion, Rosnow and
Rosenthal (1996) discussed several types of correlation co-
efficients that are useful in assessing experimental effects.
Their work is particularly valuable in situations in which the
researcher has questions that are best addressed by testing
single contrasts. Rosnow and Rosenthal emphasized the use
of the Pearson correlation, rather than the squared multiple
correlation, partly because of concern that the latter tends to
present an overly pessimistic picture of the value of “small”
experimental effects.

The second suggestion, exact interval estimation, has
been gathering momentum since around 1980. The move-
ment to replace hypothesis tests with confidence intervals
stems from the fundamental realization that, in many if not
most situations, confidence intervals provide more of the
information that the scientist is truly interested in. For
example, in a two-group experiment, the scientist is more
interested in knowing how large the difference between the
two groups is (and how precisely it has been determined)
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than whether the difference between the groups is exactly
zero.

The third suggestion, which might be called tests of close
fit, has much in common with the approach widely known to
biostatisticians as bioequivalence testing and is based on the
idea that the scientist should not be testing perfect adher-
ence to a point hypothesis but should replace the test of
close fit with a “relaxed” test of a more appropriate hypoth-
esis. Tests of close fit share many of their computational
aspects with the exact interval estimation approach in terms
of the software routines required to compute probability
levels, power, and sample size. They remain within the
familiar hypothesis-testing framework, while providing im-
portant practical and conceptual gains, especially when the
experimenter’s goal is to demonstrate that an effect is
trivial.

In this article, I present methods that implement; support;
and, in some cases, unify and extend major suggestions (1)
through (3) discussed above. First I briefly review the his-
tory, rationale, and theory behind exact confidence intervals
on measures of standardized effect size in ANOVA. I then
provide detailed instructions, with examples, and software
support for computing these confidence intervals. Next I
discuss a general procedure for assessing effects that are
represented by one or more contrasts, using correlations.
Included is a population rationale, with sampling theory and
an exact confidence interval estimation procedure, for one
of the correlational measures discussed by Rosnow and
Rosenthal (1996).

Although the initial emphasis is on confidence interval
estimation, I also discuss how the same technology that
generates confidence intervals may be used to test hypoth-
eses of minimal effect, thus implementing the good enough
principle discussed by Serlin and Lapsley (1993).

Exact Confidence Intervals on Standardized
Effect Size

The notion that hypothesis tests of zero effect should be
replaced with exact confidence intervals on measures of
effect size has been around for quite some time but was
somewhat impractical because of its computational de-
mands until about 10 years ago. A general method for
constructing the confidence intervals, which Steiger and
Fouladi (1997) referred to as noncentrality interval estima-
tion, is considered elementary by statisticians but seldom is
discussed in behavioral statistics texts. In this section, I
review some history, then describe the method of noncen-
trality interval estimation in detail.

Rationale and History

Suppose that, as a researcher, you test a drug that you
believe enhances performance. You perform a simple two-

group experiment with a double-blind control. In this case,
you are engaging in “reject–support” (R-S) hypothesis test-
ing (rejecting the null hypothesis will support your belief).
The null and alternative hypotheses might be

H0: �1 � �2; H1: �1 � �2. (1)

The null hypothesis states that the drug is no better than a
placebo. The alternative, which the investigator believes, is
that the drug enhances performance. Rejecting the null
hypothesis, even at a very low alpha such as .001, need not
indicate that the drug has a strong effect, because if sample
size is very large relative to the sampling variability of the
drug effect, even a trivial effect might be declared highly
significant. On the other hand, if sample size is too low,
even a strong effect might have a low probability of creating
a statistically significant result.

Statistical power analysis (Cohen, 1988) and sample size
estimation have been based on the notion that calculations
made before data are gathered can help to create a situation
in which neither of the above problems is likely to occur.
That is, sample size is chosen so that power will be high, but
not too high.

There is an alternative situation, “accept–support” (A-S)
testing, that attracts far less attention than R-S testing in
statistics texts and has had far less impact on the popular
wisdom of hypothesis testing. In A-S testing, the statistical
null hypothesis is what the experimenter actually wishes to
prove. Accepting the statistical null hypothesis supports the
researcher’s theory. Suppose, for example, an experiment
provides convincing evidence that the above-mentioned
drug actually works. The next step might be to provide
convincing evidence that it has few, or acceptably low, side
effects.

In this case two groups are studied, and some measure of
side effects is taken. The null hypothesis is that the exper-
imental group’s level of side effects is less than or equal to
the control group’s level. The researcher (or drug company)
supporting the research wants not to reject this null hypoth-
esis, because in this case accepting the null hypothesis
supports the researcher’s point of view, that is, that the drug
is no more harmful than its predecessors.

In a similar vein, a company might wish to show that a
generic drug does not differ appreciably in bioavailability
from its brand name equivalent. This problem of bioequiva-
lence testing is well known to biostatisticians and has re-
sulted in a very substantial literature (e.g., Chow & Liu,
2000).

Suppose that Drug A has a well-established bioavailabil-
ity level �A, and an investigator wishes to assess the bio-
equivalence of Drug B with Drug A. One might engage in
A-S testing, that is, test the null hypothesis that

�A � �B (2)
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and declare the two drugs bioequivalent if this null hypoth-
esis is not rejected. However, the perils of such A-S testing
are even greater than in R-S testing. Specifically, simply
running a sloppy, low-power experiment will tend to result
in nonrejection of the null hypothesis, even if the drugs
differ appreciably in bioavailability. Thus, paradoxically,
someone trying to establish the bioequivalence of Drug B
with Drug A could virtually guarantee success simply by
using too small a sample size. Moreover, with extremely
large sample sizes, Drug B might be declared nonequivalent
to Drug A even if the difference between them is trivial.

Because of such problems, biostatisticians decided long
ago that the test for strict equality is inappropriate for
bioavailability studies (Metzler, 1974). Rather, a dual hy-
pothesis test should be performed. Suppose that the Food
and Drug Administration has determined that any drug with
bioavailability within 20% of �A may be considered bio-
equivalent and prescribed in its stead. Suppose that �1 and
�2 represent these bioequivalence limits. Then establishing
bioequivalence of Drug B with Drug A might amount to
rejecting the following hypothesis,

H0: �B � �2 or �B � �1 (3)

against the alternative

Ha: �1 � �B � �2. (4)

In practice, this usually amounts to testing two one-sided
hypotheses,

H01: �B � �1 versus Ha1: �B � �1 (5)

and

H02: �B � �2 versus Ha2: �B � �2. (6)

An alternative approach (Westlake, 1976) is to construct
a confidence interval for �B. Bioequivalence would be de-
clared if the confidence interval falls entirely within the
established bioequivalence limits.

In other contexts, particularly the more exploratory stud-
ies performed in psychology, the research goal may be
simply to pinpoint the nature of a parameter rather than to
decide whether it is within a known fixed range. In that case,
reporting the endpoints of a confidence interval (without
announcing an associated decision) may be an appropriate
conclusion to an analysis. In any case, because the hypoth-
esis test may be performed with the confidence interval, it
seems that the confidence interval should always be re-
ported. It contains all the information in a hypothesis test
result, and more.

In structural equation modeling, which includes factor
analysis and multiple regression as special cases, statistical
testing prior to 1980 was limited to a chi-square test of
perfect fit. In this procedure, the statistical null hypothesis is

that the model fits perfectly in the population. This hypoth-
esis test was performed, and a model was judged to fit the
data “sufficiently well” if the null hypothesis was not re-
jected. There was widespread dissatisfaction with the test,
because no model would be expected to fit perfectly, and so
large sample sizes usually led to rejection of a model, even
if it fit the data quite well. In this arrangement, enhanced
precision actually worked against the researcher’s interests.
Steiger and Lind (1980) suggested that the traditional null
hypothesis test of perfect fit of a structural model be re-
placed by a confidence interval on the root-mean-square
error of approximation (RMSEA), an index of population
badness of fit that compensated for the complexity of the
model.

MacCallum, Browne, and Sugawara (1996) suggested
augmenting the confidence interval with a pair of hypothesis
tests. They considered a population RMSEA value of .05 to
be indicative of a close-fitting model, whereas a value of .08
or more was evidence of marginal to poor fit. Consequently,
a test of close fit would test the null hypothesis that the
RMSEA is greater than or equal to .05 against the alterna-
tive that it is less than .05. Rejection of the null hypothesis
indicates close fit. A test of not-close fit tests the null
hypothesis that the RMSEA is less than or equal to .08
against the alternative that it is greater than .08. Rejection of
the null hypothesis indicates that fit is not close. MacCallum
et al. demonstrated in detail how, with such hypothesis tests,
power calculations could be performed and required sample
sizes estimated. These two one-sided tests can be performed
easily and simultaneously with a single 1 � 2	 confidence
interval recommended by Steiger (1989). Simply construct
the confidence interval and see whether its upper end is
below .05 (in which case the test of close fit results in
rejection at the alpha level) and whether its lower end
exceeds .08 (in which case the test of not-close fit results in
rejection at the alpha level). The confidence interval pro-
vides all the information in both hypothesis tests, and more.

Fleishman (1980) suggested interval estimation as a sup-
plement for the F test in ANOVA. He gave examples of
how to compute exact confidence intervals on a number of
useful quantities, such as the signal-to-noise ratio, in
ANOVA. These confidence intervals offered clear advan-
tages over the traditional hypothesis test. Other authors have
noted the existence of exact confidence intervals for the
standardized effect size in the simplest special case of
ANOVA, the two-sample t test (e.g., Hedges & Olkin,
1985).

The rationale for switching from hypothesis testing to
confidence interval estimation is straightforward (Steiger &
Fouladi, 1997). Unfortunately, the exact interval estimation
procedures of Steiger and Lind (1980), Fleishman (1980),
and Hedges and Olkin (1985) are virtually impossible to
compute accurately by hand. However, by 1990, microcom-
puter capabilities had advanced substantially. The RMSEA
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confidence interval was implemented in general purpose
structural equation modeling software (Mels, 1989; Steiger,
1989) and, by the late 1990s, had achieved widespread use.
Steiger (1990) presented general procedures for construct-
ing confidence intervals on measures of effect size in co-
variance structure analysis, ANOVA, contrast analysis, and
multiple regression. Steiger and Fouladi (1992) produced a
general computer program, R2, that performed exact confi-
dence interval estimation of the squared multiple correlation
in multiple regression. Taylor and Muller (1995, 1996) have
presented general procedures for analyzing power and non-
centrality in the general linear model, including an analysis
of the impact of restriction of published articles to signifi-
cant results. Steiger and Fouladi (1997) demonstrated gen-
eral procedures for confidence interval calculations, and
Steiger (1999) implemented these in a commercial software
package. Smithson (2001) discussed a number of confi-
dence interval procedures in fixed and random regression
models and included SPSS macros for calculating confi-
dence intervals for noncentral distributions. Reiser (2001)
discussed confidence intervals on functions of Mahalanobis
distance.

General Theory of Noncentrality-Based Interval
Estimation

In this section, I review the general theoretical principles
for constructing exact confidence intervals for effect size,
power, and sample size in the balanced fixed-effects be-
tween-subjects ANOVA. For a more detailed discussion of
these principles, see Steiger and Fouladi (1997). Through-
out what follows, I adopt a simple notational device: When
several groups or cells are sampled, I use Ntot to stand for
the total sample size and use n to stand for the number of
observations in each group.

I begin this section with a brief nontechnical discussion of
noncentral distributions. The t, chi-square, and F distribu-
tions are special cases of more general distributions called
the noncentral t, noncentral chi-square, and noncentral F.
Each of these noncentral distributions has an additional
parameter, called the noncentrality parameter. For example,
whereas the F distribution has two parameters (the numer-
ator and denominator degrees of freedom), the noncentral F
has these two plus a noncentrality parameter (often indi-
cated with the symbol 
). When the noncentral F distribu-
tion has a noncentrality parameter of zero, it is identical to
the F distribution, so it includes the F distribution as a
special case. Similar facts hold for the t and chi-square
distributions. What makes the noncentrality parameter es-
pecially important is that it is related very closely to the
truth or falsity of the null hypotheses that these distributions
are typically used to test. Thus, for example, when the null
hypothesis of no difference between two means is correct,
the standard t statistic has a distribution that has a noncen-

trality parameter of zero, whereas if the null hypothesis is
false, it has a noncentral t distribution, that is, the noncen-
trality parameter is nonzero. The more false the null hy-
pothesis, the larger the absolute value of the noncentrality
parameter for a given alpha and sample size.

Most confidence intervals in introductory textbooks are
derived by simple manipulation of a statement about inter-
val probability of a sampling distribution. This approach
cannot be used to generate exact confidence intervals for
many quantities of fundamental importance in statistics. As
an example, consider the sample squared multiple correla-
tion, whose distribution changes as a function of the popu-
lation squared multiple correlation. Confidence intervals for
the squared multiple correlation are very informative yet are
not discussed in standard texts, because a single simple
formula for the direct calculation of such an interval cannot
be obtained in a manner analogous to the way one obtains a
confidence interval for the population mean �. Steiger and
Fouladi (1997) discussed a general method for confidence
interval construction that handles many such interesting
examples. The method combines two general principles,
which they called the confidence interval transformation
principle and the inversion confidence interval principle.
The former is obvious but seldom discussed formally. The
latter is referred to by a variety of names in textbooks and
review articles (Casella & Berger, 2002; Steiger & Fouladi,
1997), yet it does not seem to have found its way into the
standard behavioral statistics textbooks, primarily because
its implementation involves some difficult computations.
However, the method is easy to discuss in principle and is
no longer impractical. When the two principles are com-
bined, a number of very useful confidence intervals result.

Proposition 1: Confidence interval transformation prin-
ciple. Let f(�) be a monotone function of �, that is, a
function whose slope never changes sign and is never zero.
Let l1 and l2 be lower and upper endpoints of a 1 � 	
confidence interval on quantity �. Then, if the function is
increasing, f(l1) and f(l2) are lower and upper endpoints,
respectively, of a 100(1 � 	)% confidence interval on f(�).
If the function is decreasing, f(l2) and f(l1) are lower and
upper endpoints. Here are two elementary examples of
this principle.

Example 1: Suppose you read in a textbook how to
calculate a confidence interval for the population variance
�2. However, you desire a confidence interval for �. Be-
cause � takes on only nonnegative values, it is a monotonic
increasing function of �2 over its domain. Hence, the con-
fidence interval for � is obtained by taking the square root
of the endpoints for the corresponding confidence interval
for �2.

Example 2: Suppose one calculates a confidence interval
for z(�), the Fisher transform of �, the population correlation
coefficient. Taking the inverse Fisher transform of the end-
points of this interval will give a confidence interval for �.
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This is, in fact, the method used to calculate the standard
confidence interval for a correlation.

These examples show why Proposition 1 is very useful in
practice. A statistical quantity we are very interested in—
such as �—may be a simple function of a quantity—such as
z(�)—we are not so interested in, but for which we can
easily obtain a confidence interval. Next, we define the
inversion confidence interval principle.

Proposition 2: Inversion confidence interval principle.
Let x be the observed value of X, a random variable with a
continuous cdf (cumulative distribution function) F(x, 
) �
Pr(X � x�
) for some numerical parameter 
. Let 	1 �
	2 � 	 with 0 � 	 � 1 be fixed values. If F(x, 
) is strictly
decreasing in 
, for fixed values of x, choose l1(x) and l2(x)
so that Pr[X � x�
 � l1(x)] � 1 � 	2 and Pr[X � x�
 �
l2(x)] � 	1. If F(x, 
) is strictly increasing in 
, for fixed
values of x, choose l1(x) and l2(x) so that Pr[X � x�
 � l1(x)]
� 	1 and Pr[X � x�
 � l2(x)] � 1 � 	2. Then the random
interval [l1(x), l2(x)] is a 100(1 � 	)% confidence interval
for 
. Upper or lower 100(1 � 	)% confidence bounds (or
“one-sided confidence intervals”) may be obtained by set-
ting 	1 or 	2 to zero.

For a simple graphically based explanation of Proposition
2, consult Steiger and Fouladi (1997, pp. 237–239). For a
clear, succinct discussion with partial proof, see Casella and
Berger (2002, p. 432), who referred to this as “pivoting” the
cdf. In this article, I assume 	1 � 	2 � 	/2, although such
an interval may not be the minimum width for a given 	.
Proposition 2 implies a simple approach to interval estima-
tion: Suppose you have observed an F statistic with a value
x and known degrees of freedom 
1 and 
2. Denote the
cumulative distribution of the F statistic by F(x, 
), where 

is the noncentrality parameter. It can be shown that if 
1, 
2,
and x are held constant at any positive value, then F(x, 
) is
strictly decreasing in 
. Accordingly, Proposition 2 can be
used. To calculate a 100(1 � 	)% confidence interval on the
noncentrality parameter of the F distribution, use the fol-
lowing steps.

1. Calculate the cumulative probability p of x in the
central F distribution. If p is below 	/2, then both
limits of the confidence interval are zero. If p is
below 1 � 	/2, the lower limit of the confidence
interval is zero, and the upper limit must be cal-
culated (go to Step 3). Otherwise, calculate both
limits of the confidence interval, using Steps 2
and 3.

2. To calculate the lower limit, find the unique value
of 
 that places x at the 1 � 	/2 cumulative
probability point of a noncentral F distribution
with 
1 and 
2 degrees of freedom.

3. To calculate the upper limit, find the unique value

of 
 that places x at the 	/2 cumulative probability
point of a noncentral F distribution with 
1 and 
2

degrees of freedom.

Calculating a confidence interval for 
 thus requires iter-
ative calculation of the unique value of 
 that places an
observed value of F at a particular percentile of the non-
central F distribution.1 In what follows, I give a variety of
examples of confidence interval calculations. Some will be
at the 95% level of confidence, others at the less common
90% level. In a later section, I discuss why, when confi-
dence intervals are used to perform a hypothesis test at the
.05 level, a 90% interval may be appropriate in some situ-
ations and a 95% interval in others. At that point, I describe
how to select confidence intervals at the appropriate level to
perform a particular hypothesis test.

Measures of Standardized Effect Size

Now I examine some more ambitious examples. For
simplicity of exposition, I assume in this section that either
the freeware program NDC (noncentral distribution calcu-
lator; see Footnote 1) or other software is available to
compute a confidence interval on 
, the noncentrality pa-
rameter of a noncentral F distribution. Consider the one-
way, fixed-effects ANOVA, in which p means are compared
for equality, and there are n observations per group. The
overall F statistic has a distribution that is a noncentral F,
with degrees of freedom p � 1 and p(n � 1) � Ntot � p.

The noncentrality parameter 
 can be expressed in a
number of ways. One formula that appears frequently in
textbooks is


 � n �
j�1

p �	j

��
2

. (7)

The 	j values in Equation 7 are the effects as commonly
defined in ANOVA, that is,

	j � �j � �. (8)

If �j is the mean of the jth group, and � is the overall
mean, then � is, in the case of equal n, simply the arithmetic
average of the �j. More generally (although in what follows
I assume a balanced design unless stated otherwise),

� � �
j�1

p nj

Ntot
�j. (9)

1 NDC (noncentral distribution calculator), a freeware Windows
program for calculating percentage points and noncentrality con-
fidence intervals for noncentral F, t, and chi-square distributions, is
available for direct download from the author’s website (http://
www.statpower.net).
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The quantity 	j/� is a standardized effect, that is, the
effect expressed in standard deviation units. The quantity

/n is therefore the sum of squared standardized effects.
There are numerous ways one might convert the sum of
squared standardized effects into an overall measure of
effect size. For example, suppose we average these squared
standardized effects in order to obtain an overall measure of
strength of effects in the design. The arithmetic average of
the p squared standardized effects, sometimes called the
signal-to-noise ratio (Fleishman, 1980), is as follows:

f 2 �
1

p �
j�1

p �	j

��
2

�



np
�




Ntot
. (10)

One problem with this measure is that it is the average
squared effect and so is not in the proper unit of measure-
ment. A potential solution is to simply take the square root
of the signal-to-noise ratio, obtaining

f � � 


Ntot
� �1

p �
j�1

p �	j

��
2

. (11)

In a one-way ANOVA with p groups and equal n, the
effects are constrained to sum to zero, so there are actually
only p � 1 independent effects. Thus, an alternative mea-
sure, 
/[(p � 1)n], is the average squared independent
standardized effect, and the root-mean-square standardized
effect (RMSSE) is as follows:

� � � 


�p � 1�n
� � 1

p � 1 �
j�1

p �	j

��
2

. (12)

Equations 11 and 12 demonstrate that the relationships
between �, f, and the noncentrality parameter 
 are
straightforward.

In order to obtain a confidence interval for �, we proceed
as follows. First, we obtain a confidence interval estimate
for 
. Next, we invoke the confidence interval transforma-
tion principle to directly transform the endpoints by divid-
ing by (p � 1)n. Finally, we take the square root. The result
is an exact confidence interval on �.

Example 3: Suppose a one-way fixed-effects ANOVA is
performed on four groups, each with a sample size of 20,
and that an overall F statistic of 5.00 is obtained, with 3 and
76 degrees of freedom, with a probability level of .0032.
The F test is thus “highly significant,” and the null hypoth-
esis is rejected at the .01 level. Some investigators might
interpret this result as implying that a powerful experimen-
tal effect was found and that this was determined with high
precision. In this case, the noncentrality interval estimate
provides a more informative and somewhat different ac-
count of what has been found.

The 95% confidence interval for 
 ranges from 1.8666 to
32.5631. To convert this to a confidence interval for �, we
use Equation 12. The corresponding confidence interval for
� ranges from .1764 to .7367. Effects are almost certainly
“here,” but they are on the order of half a standard devia-
tion, what is commonly considered a medium-size effect.
Moreover, the size of the effects has not been determined
with high precision.

Example 4: Fleishman (1980) described the calculation of
confidence intervals on the noncentrality parameter of the
noncentral F distribution to obtain, in a manner equivalent
to that used in the previous two examples, confidence in-
tervals on f 2 and �2, the latter of which is defined as

�A(partialed)
2 �

S�A

2

S�A

2 � �e
2 , (13)

where S�A

2 is the variance of p means for the levels of a
particular effect A, that is,

S�A

2 � �1/p� �
j�1

p

��j � �� �2 (14)

and �e
2 is the within-cell variance. �A(partialed)

2 may be
thought of as the proportion of the variance remaining (after
all other main effects and interactions have been partialed
out) that is explained by the effect. (In what follows, for
simplicity, I refer to the coefficient simply as �2.) There are
simple relationships between f 2, �2, and 
, specifically,

f 2 �
�2

1 � �2 �



pn
�




Ntot
(15)

and

�2 �
f 2

1 � f 2 �




 � Ntot
. (16)

Fleishman (1980) cited an example given by Venables
(1975) of a five-group ANOVA with n � 11 per cell and an
observed F of 11.221. In this case the 90% confidence
interval for the noncentrality parameter 
 has endpoints
19.380 and 71.549. Once we obtain the confidence interval
for 
, it is a trivial matter to transform the limits of the
interval to confidence limits for �2, using Equation 16. For
example, the lower limit becomes

19.380

19.380 � �5��11�
�

19.380

19.380 � 55
�

19.380

74.380
� .261.

(17)

In a similar manner, the upper limit of the confidence
interval can be calculated as .565. The confidence interval
has determined with 90% confidence that the main effect
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accounts for between 26.1% and 56.5% of the variance in
the dependent variable.

General Procedures for Effect Size Intervals in
Between-Subjects Factorial ANOVA

In a previous example, we saw how easy it is to construct
a confidence interval on measures of effect size in one-way
ANOVA, provided a confidence interval for 
 has been
computed. In this section, a completely general method is
demonstrated for computing confidence intervals for vari-
ous measures of standardized effect size in completely
between-subjects factorial ANOVA designs with equal
sample size n per cell.

We begin with a general formula relating the noncentral-
ity parameter 
 with the RMSSE in any completely be-
tween-subjects factorial ANOVA. Let � stand for a partic-
ular effect, and n the sample size per cell. Then

�� � � 
�

n� df�

. (18)

In Equation 18, n� is equal to n (the number of observations
in each cell of the design) multiplied by the product of the
numbers of levels in all the factors not represented in the effect
currently under consideration; df� is the numerator degrees of
freedom parameter for the effect under consideration.

There are simple relationships between the RMSSE and
other measures of standardized effect size. Specifically, for
a general factorial ANOVA,

f �
2 �

��
2 df�

Cells�

�

�

Ntot
, (19)

where Cells� is, for any main effect, the number of levels of
the effect. For any interaction, it is the product of the
numbers of levels for all factors involved in the interaction.
The relationship between f 2 and �2 is given in Equation 16.

Some examples of these quantities, for a four-way
ANOVA, with p, q, r, and s levels of factors A, B, C, and
D, respectively, are given in Table 1. The table may be used
also for one-, two-, or three-way ANOVAs simply by elim-
inating terms involving levels not represented in the design.
For example, in a three-way ANOVA, the BC interaction
effect has (q � 1)(r � 1) numerator degrees of freedom, and
nBC is np, because there is no s in this design. The error
degrees of freedom in a three-way ANOVA are pqr(n � 1).
In the following two examples, I demonstrate how to com-
pute a 90% confidence interval on various measures of
effect, using the information in the table.

Example 5: Suppose that, as a researcher, you perform a
three-way 2 � 3 � 7 ANOVA, with n � 6 observations per
cell. In this case, we have p � 2, q � 3, and r � 7.

Suppose that, for the A main effect, you observe an F
statistic of 4.2708, which, with 1 and 210 degrees of free-

dom, has p � .0400. We first calculate a confidence interval
for 
. The endpoints of this interval are 
lower � 0.100597
and 
upper � 13.8186. To convert these to confidence inter-
vals on �, f 2, f, and �2, we apply Equations 18, 19, and 16.
For the A effect, we have nA � (6)(3)(7) � 126, dfA � (2 �
1) � 1, CellsA � 2, and Ntot � 252. Hence, for � we have,
from Equation 18,

�lower � �0.100597

�126��1�
� 0.028256, �upper

� �13.8186

�126��1�
� 0.331167. (20)

For f 2 and f we have, for the lower limits,

f lower
2 �

0.100597

252
� 0.000399194, flower � 0.01998. (21)

For the upper limits, we obtain f upper
2 � 0.0548357 and

fupper � 0.234170.

We can also convert the confidence limits for f 2 into
limits for �2, using Equation 16. We have

�lower
2 �

f lower
2

1 � f lower
2 �

0.000399194

1.000399194
� 0.000399035. (22)

In a similar manner, we obtain the upper limit as �upper
2 �

0.0519851.
Example 6: Table 1 can also be used for a two-way

ANOVA, simply by letting r � 1 and s � 1 and ignoring all

Table 1
Key Quantities for Computing Effect Size Intervals in Four-Way
Analysis of Variance

Source Levels df� n�

A p p � 1 nqrs
B q q � 1 nprs
C r r � 1 npqs
D s s � 1 npqr
AB (p � 1)(q � 1) nrs
AC (p � 1)(r � 1) nqs
AD (p � 1)(s � 1) nqr
BC (q � 1)(r � 1) nps
BD (q � 1)(s � 1) npr
CD (r � 1)(s � 1) npq
ABC (p � 1)(q � 1)(r � 1) ns
ABD (p � 1)(q � 1)(s � 1) nr
ACD (p � 1)(r � 1)(s � 1) nq
BCD (q � 1)(r � 1)(s � 1) np
ABCD (p � 1)(q � 1)(r � 1)(s � 1) n
Error pqrs(n � 1)

Note. � represents a particular effect; n represents the sample size per
cell; and p, q, r, and s represent levels of factors A, B, C, and D,
respectively.
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effects involving factors C and D. Suppose, for example,
one were to perform a two-way 2 � 7 ANOVA, with n �
4 observations per cell, and the F statistic for the AB
interaction is observed to be 2.50. The key quantities are dfAB

� 6, dferror � 42, nAB � 4, and CellsAB � 14. The confi-
dence limits for 
AB are 
lower � 0.462800 and 
upper �
25.8689. Consequently, from Equation 18, the confidence
limits for the RMSSE are

�lower � � 
lower

nABdfAB
� �0.462800

�4��6�
� 0.1389, (23)

�upper � �25.8689

�4��6�
� 1.0382. (24)

The confidence intervals for f 2 and f are

f lower
2 �

0.462800

56
� 0.008264, flower � 0.0909, (25)

f upper
2 �

25.8689

56
� 0.461944, fupper � 0.6797. (26)

Using Equation 16, we convert the above to the following
confidence limits for �2:

�lower
2 �

f lower
2

1 � f lower
2 �

0.008264

1.008264
� 0.0082, (27)

�upper
2 �

0.461944

1.461944
� 0.3160. (28)

Multiple Regression With Fixed Regressors

One standardized index of the size of effects is to com-
pute the squared multiple correlation coefficient between
the independent variable and the scores on the dependent
variable. This index, in the population, characterizes the
strength of the effect. ANOVA may be conceptualized as a
linear regression model with fixed independent variables. In
this case, the theory of multiple regression with fixed re-
gressors applies. It is important to realize (e.g., Sampson,
1974) that the theory for fixed regressors, although it shares
many similarities with that for random regressors, has im-
portant differences, which are especially apparent when
considering the nonnull distributions of the variables. The
general model is

E��� � X�, (29)

where � is an Ntot � 1 random vector, X is an Ntot � p
matrix, and � is a p � 1 vector of unknown parameters.

This model includes model errors (�) that are assumed to
be independently and identically distributed with a normal
distribution, zero mean, and variance �2. That is,

� � X� � � � �̂ � �, (30)

and � has a multivariate normal distribution with zero mean
vector 0 and covariance matrix �2I, with I an identity
matrix. It is common to partition � into

� � � �0

�1
�, (31)

where �0 is an intercept term. Correspondingly, X is parti-
tioned as

X � 	1 X1
, (32)

where 1 is a column of ones and X1 contains the original X
scores transformed into deviations about their sample
means.

Consider now a set of observed scores y, representing
realizations of the random variables in �. If X1 has p � 1
columns, then an F statistic for testing the hypothesis that
�1 � 0 is

F �
R2/�p � 1�

�1 � R2�/�Ntot � p�
. (33)

This statistic has a noncentral F distribution with p � 1 and
Ntot � p degrees of freedom, with a noncentrality parameter
given by


 �
��X��I � P1�X�

�2 �
��X�Q1X�

�2 . (34)

For any matrix A of full column rank, PA is the column
space projection operator A(A�A)�1A� and QA the comple-
mentary projector I � PA.

We now turn to an application of this theory in the
context of ANOVA. Consider the simple case of a one-way
fixed-effects ANOVA with n observations in each of p
independent groups. It is well-known that this model can be
written in the form of Equation 29, where X is a design
matrix with Ntot � np rows and p columns, and � contains
ANOVA parameters.

We are not interested in R2 per se. Rather, we are inter-
ested in the corresponding quantity �2 in an infinite popu-
lation of observations in which treatment groups are repre-
sented equally. There are several alternative ways of
conceptualizing such a quantity. Formally, we can define �2

as the probability limit of R2, that is,

�2 � plim
n3�

�R2�. (35)

This is the constant that R2 converges to as the sample size
increases without bound. It can be proven (see Appendix A)
that, with this definition of �2, the noncentrality parameter is
equivalent to
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 � Ntot

�2

1 � �2 , (36)

and so

�2 �




 � Ntot
. (37)

Consequently, a confidence interval for 
 may be converted
easily into a confidence interval on �2 or �, because � is
nonnegative. �2 represents the coefficient of determination
for predicting scores on the dependent variable from only a
knowledge of the population means of the groups in an
infinite population in which all treatment groups are equally
represented.

Example 7: Suppose that X is set up as in Equation 38 to
represent a full rank design matrix for a one-way ANOVA,
with three groups, and n � 3, and that the scores in y are 1,
2, 3, 4, 5, 6, 7, 8, 9. In this parameterization, �0 corresponds
to �3, �1 corresponds to �1 � �3, and �2 corresponds to
�2 � �3. The group means are 2, 5, 8, and the group
variances are all 1.

�
y11

y21

y31

y12

y22

y32

y13

y23

y33

	 � �
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 0
1 0 0
1 0 0

	 � �0

�1

�2

� � �
�11

�21

�31

�12

�22

�32

�13

�23

�33

	. (38)

In this case, it is easy to show using any standard multiple
regression program that the sample squared multiple corre-
lation for predicting y from X is .90 and that the F statistic
for testing the null hypothesis that �2 � 0 is

F�2, 6� �
R2/2

�1 � R2�/6
�

.9/2

.1/6
� 27.0. (39)

This F statistic is identical to the one obtained by perform-
ing a one-way fixed-effects ANOVA on the data. The 90%
confidence interval for 
 has endpoints of 
1 � 10.797 and

2 � 119.702. The lower endpoint for the confidence inter-
val on �2, the coefficient of determination, is thus

10.797

10.797 � 9
�

10.797

19.797
� .545, (40)

and the upper endpoint is

119.702

119.702 � 9
�

119.702

128.702
� .930. (41)

With one-way ANOVA and equal n per group, this con-

fidence interval is identical to the one for �2 discussed
earlier. Note also that the sample R2 is positively biased with
small sample sizes and will consequently be much closer to the
upper end of the confidence interval than the lower.

One of several alternative methods for parameterizing the
linear model in Equation 29 is to use what is sometimes called
effect coding. In this case, the entries in X correspond to the
contrast weights applied to group means in the ANOVA null
hypothesis. For example, the hypothesis of no treatments in a
one-way ANOVA with three groups corresponds to two con-
trasts simultaneously being zero, that is, �1 � �3 � 0 and
�2 � �3 � 0. The contrast weights for the two hypotheses are
thus 1, 0, �1 and 0, 1, �1. Thus, omnibus effect size in
ANOVA can be expressed as the multiple correlation between
a set of contrast weights and the dependent variable.

There has been a fair amount of discussion in the applied
literature (Ozer, 1985; Rosenthal, 1991; Steiger & Ward,
1987) about whether the coefficient of determination is
overly pessimistic in describing the strength of effects.
Those who prefer � may convert a confidence interval on �2

to a confidence interval on � simply by taking the square
root of the endpoints of the former.

Confidence Intervals on Single-Contrast Measures of
Effect Size

Rosenthal et al. (2000) argued convincingly for the im-
portance of replacing the omnibus hypothesis in ANOVA
with hypotheses that focus on substantive research ques-
tions. Often such hypotheses involve single contrasts � of
the form � � ¥j�1

p cj�j, with cj , the contrast weights and the
null hypothesis being that � � 0. Rosenthal et al. discussed
several different correlational measures for assessing the
status of hypotheses on a single contrast. In this section, I
discuss methods for exact confidence interval estimation of
measures of effect size for a single contrast, including the
population equivalent of the correlation measure rcontrast

2

discussed by Rosenthal et al.

Exact Confidence Intervals for Standardized
Contrast Effect Size

Consider a contrast hypothesis on means, of the form

H0: ���
j�1

p

cj�j � 0. (42)

With equal sample sizes of n per group, this hypothesis
may be tested with a t statistic of the form

t � �n
�̂

�MSwithin��
j�1

p

cj
2�

, (43)
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with

�̂ � �
j�1

p

cjY� �j, (44)

where Y� �j represents the sample mean of the jth group. The
standardized effect size Es is the size of the contrast in
standard deviation units, that is,

Es �
�

�
. (45)

The test statistic has a noncentral t distribution with
p(n � 1) degrees of freedom and a noncentrality parameter of

� � � n

�
j�1

p

cj
2

Es � �L�Es. (46)

To estimate Es, one obtains a confidence interval for �,
using the method discussed by Steiger and Fouladi (1997),
and transforms the endpoints of the confidence interval by
dividing by L (i.e., the expression under the radical in
Equation 46), as shown in the example below.

Example 8: The data in Table 2 represent four indepen-
dent groups of three observations each. Suppose one wished
to test the following null hypothesis:

� �
�1 � �4

2
�

�2 � �3

2
� 0. (47)

This hypothesis tests whether the average of the means of
the first and fourth groups is equal to the average of the
means of the other two groups. Suppose we observe t(8) �
1.7321. The traditional 95% confidence interval for �
ranges from �0.3314 to 2.3314. Because mean square error
is 1 in this example, we would expect a confidence interval
for Es to be similar. Actually, it is somewhat narrower. The
95% confidence interval for � ranges from �0.4429 to
3.8175. The sum of squared contrast weights is 1, so L �

3, and the endpoints of the confidence interval are divided
by 
3 to obtain 95% confidence limits of �0.2557 and
2.2041 for Es.

Exact Confidence Intervals for �contrast
2

Rosenthal et al. (2000) discussed the sample statistic
rcontrast

2 , which is the squared partial correlation between the
contrast weight vector discussed in the previous section and
the scores in y, with all other sources of systematic between-
groups variation partialed out. Consider the data discussed
in the preceding example. These weights happen to be the
rescaled orthogonal polynomial weights for testing qua-
dratic trend. The remaining sources of between-groups vari-
ation may be predicted from any orthogonal complement of
the quadratic trend contrast weights. Consequently, if we
construct the vectors with columns of repeated linear and
cubic contrast weights, the partial correlation between y and
the contrast weights with the quadratic and cubic weights
partialed out is rcontrast

2 , which may also be computed di-
rectly from the standard F statistic for the contrast as

rcontrast
2 �

Fcontrast

Fcontrast � dfwithin
. (48)

Rosenthal et al. (2000) did not discuss sampling theory
for rcontrast

2 . However, a population equivalent, �contrast
2 , may

be defined, and it may be shown (see Appendix B) that, with
p groups in the analysis,

Fcontrast �
rcontrast

2

�1 � rcontrast
2 �/�Ntot � p�

(49)

has a noncentral F distribution with 1 and Ntot � p degrees
of freedom and noncentrality parameter


 � Ntot

�contrast
2

1 � �contrast
2 . (50)

Consequently, one may construct a confidence interval
for �contrast

2 by computing a confidence interval for 
 and
transforming the endpoints, using the result of Equation 37.

Example 9: Consider again the data in Table 2. We can
compute the F statistics corresponding to linear, quadratic,
and cubic trend and, for each trend, compute confidence
intervals for �contrast

2 and/or �contrast. For example, consider
the test for linear trend. The F statistic is 216, with 1 and 8
degrees of freedom, and the 95% confidence interval for the
noncentrality parameter 
 has endpoints of 54.2497 and
483.8839. Consequently, from Equation 37, a 95% confi-
dence interval for �contrast

2 has endpoints of

�lower
2 �

54.2497

54.2497 �12� .819,�upper
2

�
483.8839

483.8839 �12� .976 (51)

The confidence interval for �contrast (defined as the square

Table 2
Sample Data for a One-Way Analysis of Variance

Group 1 Group 2 Group 3 Group 4

1 3 8 12
2 4 9 13
3 5 10 14
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root of �contrast
2 , thus excluding negative values as in

Rosenthal et al., 2000) ranges from .905 to .988.
Table 3 shows the results of computing contrast correla-

tions and the associated confidence intervals for linear,
quadratic, and cubic trend. Some brief comments are in
order. Note, first, that although the rcontrast values for qua-
dratic and cubic trends are appealingly high, the correspond-
ing confidence intervals are quite wide and include zero. On
the other hand, the confidence interval for the linear trend is
very narrow.

The Relationship Between Confidence Intervals and
Hypothesis Tests—Choosing the

Appropriate Interval

Confidence intervals on measures of effect size convey all
the information in a hypothesis test, and more. If one selects
an appropriate confidence interval, a hypothesis test may be
performed simply by inspection. If the confidence interval
excludes the null hypothesized value, then the null hypoth-
esis is rejected.

In such applications, I recommend using the traditional
two-sided confidence interval, rather than a one-sided
interval (or confidence bound), regardless of whether the
hypothesis test is one-sided or two-sided. When a two-
sided confidence interval is used to perform the hypoth-
esis test, the confidence level must be matched appropri-
ately both to the type of hypothesis test and to the Type
I error rate. Recall that the endpoints of the two-sided
confidence interval for a parameter � at the 100(1 � 	)%
confidence level are the values of � that place the ob-
served statistic �̂ at the 	/2 or 1 � 	/2 cumulative
probability point. Suppose the upper and lower limits of
the 100(1 � 	)% confidence interval are U and L, re-
spectively. Then �̂ is the rejection point at the 	/2 sig-
nificance level for one-sided hypothesis tests that � is,
first, greater than or equal to U and, second, less than or
equal to L. The observed statistic �̂ is also equal to (a) the
upper rejection point for a two-sided test that � � L at the
alpha level and (b) the lower rejection point for the
two-sided test that � � U at the alpha level. Conse-
quently, the endpoints of the confidence interval repre-
sent two values of � that the observed statistic would
barely reject in a two-sided test with significance level

alpha. These endpoints are also appropriate for testing
one-sided hypotheses at the 	/2 significance level.

The preceding paragraph implies a general rule of thumb:
to use the confidence intervals to test a statistical hypothesis
and to maintain a Type I error rate at alpha:

1. When testing a two-sided hypothesis at the alpha
level, use a 100(1 � 	)% confidence interval.

2. When testing a one-sided hypothesis at the alpha
level, use a 100(1 � 2	)% confidence interval.

Example 10: Consider a test of the hypothesis that � �
0, that is, that the RMSSE (as defined in Equation 12) in
an ANOVA is zero. This hypothesis test is one-sided,
because the RMSSE cannot be negative. To use a two-
sided confidence interval to test this hypothesis at the
	 � .05 significance level, one should examine the
100(1 � 2	)% � 90% confidence interval for �. If the
confidence interval excludes zero, the null hypothesis
will be rejected. This hypothesis test is equivalent to the
standard ANOVA F test.

Example 11: Consider the test that the standardized effect
size Es in Equation 45 is precisely zero. This hypothesis test
is two-sided, because Es can be either positive or negative.
Consequently, to use a confidence interval to test this hy-
pothesis at the .05 level, a 100(1 � 	)% � 95% two-sided
confidence interval should be used, and the null hypothesis
rejected only if both ends of the confidence interval are
above zero or if both are below zero.

Example 12: Consider a situation in which one wishes
to establish that the standardized effect size Es in Equa-
tion 45 is small, and that smallness is defined as an
absolute value less than 0.20. To establish smallness, one
must reject a hypothesis that Es is not small. Because Es

can be either positive or negative, Es can be not small in
two directions. The hypothesis that Es is not small can
therefore be tested with two simultaneous one-sided hy-
pothesis tests,

H01: Es � �0.20 versus Ha1: Es � �0.20 (52)

and

H02: Es � 0.20 versus Ha2: Es � 0.20. (53)

These two hypotheses can both be tested simultaneously at
the .05 level by constructing a 90% confidence interval and
observing whether the lower end of the interval is above
�0.20 (to test the first one-sided hypothesis) and the upper
end of the interval is below 0.20. What this amounts to is
observing whether the entire interval is between �0.20 and
0.20. If so, the hypothesis that Es is not small is rejected, and
smallness is indicated.

Table 3
Confidence Intervals (CIs) for Contrast Correlations

Statistic Linear Quadratic Cubic

F   216.00 3.00 2.40
rcontrast

2 .964 .273 .231
CI .819–.976                    0–.541                   0–.520
rcontrast .982 .522 .480
CI .905–.988                    0–.741                   0–.721

174 STEIGER



Tests of Minimal Effect

Rationale and Method

In many situations, the null hypothesis of zero effect is
inappropriate or can be misleading. For example, in R-S
testing with extremely large sample sizes, a null hypoth-
esis may be rejected consistently, with a very low prob-
ability level, even when the population effect is small.
Conversely, in A-S testing, the nil hypothesis of zero
effect is often unreasonable, and the hypothesis the ex-
perimenter probably wants to test is that the effect is
trivial.

Tests of minimal effect are a partial solution to the
problems caused by inappropriate testing of a nil hypoth-
esis when the goal is to show that an effect is small. For
example, if some “minimal reasonable” effect size can be
specified, rejection of the hypothesis that the effect is less
than or equal to this value is of practical importance
whether or not the sample size is very large. In the
traditional A-S situation, in which the experimenter is
trying to show that an effect is trivial, the hypothesis that
the effect is greater than or equal to a minimal reasonable
value can be tested. Serlin and Lapsley (1993) discussed
this latter notion in detail and gave numerical examples.
In such cases, large sample size will work for, rather than
against, the experimenter, because if the effect size is
truly below a level that is of practical import, larger
samples will yield greater power to demonstrate that fact
by rejecting the null hypothesis that the effect is at or
above a point of triviality.

The confidence intervals described in the preceding sec-
tion can be used to test hypotheses of minimal effect: One
simply observes whether the appropriately constructed con-
fidence interval contains the target minimal reasonable
value. For example, suppose you decide that an RMSSE of
0.25 constitutes a minimal reasonable effect. In other words,
effects below that level may be ignored. Effects that are
definitely above that level are nontrivial. If you wish to
demonstrate that effects are trivial, you might test the
hypotheses

H0: � � 0.25; H1: � � 0.25. (54)

On the other hand, if you wish to demonstrate that effects
are definitely not trivial, you might test the hypotheses

H0: � � 0.25; H1: � � 0.25. (55)

In each case, rejecting the null hypothesis will support the
goal in performing the test, and the problems inherent in
A-S testing can be avoided.

A simple approach to simultaneously testing the two
hypotheses discussed above is to examine the 1 � 2	
confidence interval for � and see if it excludes 0.25. If

the entire confidence interval is above the point of triv-
iality (i.e., 0.25), then the effect may be judged non-
trivial. If the entire confidence interval is below the point
of triviality, then the effect has been shown to be trivial.
There is a strong similarity between using the effect size
confidence interval in this way and the long tradition of
bioequivalence testing.

Example 13: Suppose you have p � 6 groups and n � 75
per group. You observe an F statistic of F(5, 444) � 2.28,
with p � .046, so the nil hypothesis of zero effects is
rejected at the .05 significance level. However, on substan-
tive grounds, you have decided that a value of � less than
0.25 can be ignored. To demonstrate triviality, you would
attempt to reject the null hypothesis that � is greater than or
equal to 0.25.

There are two approaches to performing the test. The
first approach requires only a single calculation from the
noncentral F distribution. Consider the cutoff value of
0.25. Using the result of Equation 12, one may convert
this to a value for 
 via the formula 
 � (p � 1)n�2 �
(6 � 1)(75)(.252) � 23.4375. The observed F statistic of
2.28 has a one-sided probability value of .0256 in the
noncentral F distribution with 
 � 23.4375, and 5 and
444 degrees of freedom, so the null hypothesis is rejected
at the .05 level, and the overall effects are declared
trivial.

An alternative approach uses the confidence interval.
Note that, because the test is one-sided, we use the 90%
confidence interval. The endpoints of the interval for 

are 0.1028 and 20.3804. Using the result of Equation 12,
we convert this confidence interval into a confidence
interval for � by dividing the above endpoints by (p � 1)n � 375,
then taking the square root. The resulting endpoints for the
confidence interval for � are 0.0166 and 0.2331. This
confidence interval excludes 0.25, so we can reject the
hypothesis that effects are nontrivial, that is, � � 0.25, at
the .05 significance level. The advantage of using the con-
fidence interval is that it provides us with an approximate
indication of the precision of the estimation process while
still allowing us to perform the hypothesis test.

Significant technical and theoretical issues surround the
use of confidence intervals in this manner.

1. The choice of a numerical “point of triviality” for
a measure of omnibus effect size should not be
treated as a mechanical selection from a small
menu of “approved” choices. Rather, it should be
considered carefully on the basis of the specific
experimental design and the substantive aspects of
the variables being measured and manipulated.
Whereas .25 might be considered trivial in one
experiment, it might be considered very important
in another.
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2. The power of both hypothesis tests must be ana-
lyzed a priori to assess whether sample size is
adequate. With low precision (i.e., a wide confi-
dence interval), one might still have high power to
demonstrate nontrivial effects if effects are large.
However, it is virtually impossible to demonstrate
triviality if precision is low, because the triviality
point will be close to zero, and a wide confidence
interval will not fit between zero and the triviality
point.

Full consideration of the technical aspects of estimating
the point of triviality, and precision of a parameter estimate
and the resulting confidence interval, is beyond the scope
(and length restrictions) of this article. However, in the next
section, I discuss several theoretical issues that the sophis-
ticated user should keep in mind.

Conclusions and Discussion

This article demonstrates that the F statistic in ANOVA
contains information about standardized effect size, and its
precision of estimation, that has not been made available in
typical social science reports and is not reported by tradi-
tional software packages. Yet this information can readily
be calculated, using a few basic techniques.

The fact is, simply reporting an F statistic, and a proba-
bility level attached to a hypothesis of nil effect, is so
suboptimal that its continuance can no longer be justified, at
least in a social science tradition that prides itself on em-
piricism. A number of the field’s most influential commen-
tators on social statistics have emphasized this and urged
that, as researchers, we revise our approach to reporting the
results of significance tests (e.g., see articles in Harlow,
Mulaik, & Steiger, 1997).

Null hypothesis testing is the source of much contro-
versy. I have tried to promote an eclectic, integrated point
of view that resists the temptation to downgrade either
the hypothesis testing or the interval estimation ap-
proaches and emphasizes how they complement each
other. Reviewers and other readers of the article have
provided much food for thought and have raised several
substantive criticisms that enriched my point of view
considerably. In the following sections, I discuss some of
the limitations of the procedures in this article, deal
explicitly with several of the more common objections to
my major suggestions, and then summarize my point of
view and present some conclusions.

Statistical Limitations and Extensions of the Present
Procedures

The procedures discussed in this article provide exact
distributional results under standard ANOVA assump-

tions (independence, normality, and equal variances) and
are easily calculated with modern software. However,
they are restricted to (a) completely between-subjects
fixed-effect ANOVA with (b) equal n per cell. The
present article does not present procedures for dealing
with the complications that result from unbalanced de-
signs and/or repeated measures, nor does it discuss ex-
tensions to random effects or mixed ANOVA models or
to multivariate analyses.

In some cases, procedures for these other situations are
already available. Consider, for example, the case of one-
way random effects ANOVA. The treatment effects are
random variables with a variance of �A

2 , and � may be
redefined as �A/�. A 100(1 � 	)% confidence interval for
� may therefore be obtained in the equal n case by taking
the square root of the well-known (Glass & Hopkins, 1996,
p. 542) confidence interval for �A

2 /�2. One obtains, with p
groups,

�lower � �max�n�1�Fobs

F*	/ 2
� 1�, 0�, �upper

� �max�n�1� Fobs

F*1�	/ 2
� 1�, 0�. (56)

Fobs is the observed value of the F statistic, and F* is the
percentage point from the F distribution with p � 1 and
p(n � 1) degrees of freedom.

This approach can be generalized to more complicated
designs. Burdick and Graybill (1992) discussed general
methods for obtaining exact confidence intervals for � and
related quantities in random effects models, both in the
equal n and unbalanced cases. Computational procedures
for the unbalanced case are much more complicated than for
the case of equal n.

However, on close inspection, some extensions yield
challenging complications that require careful analysis.
Some examples are as follows.

1. In the unbalanced, fixed-effects case, the noncentrality
parameter 
 is defined as follows:


 � �
j�1

p

nj�	j

��
2

. (57)

Note that with � defined as in Equation 9, the quantity f 2 as
defined in Equation 10 represents the ratio of between-
groups to within-group variance in a population with prob-
ability of membership in the treatment groups proportional
to the sample sizes in the ANOVA. There are situations in
which this quantity is of interest (such as when the sampling
plan reflects the relative size of natural subpopulations) and
others in which it might not be. Cohen (1988, pp. 359–361)
discussed this point in detail.

2. In repeated measures ANOVA designs, the noncen-
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trality parameter 
 unfortunately confounds effects of treat-
ments with the correlation among observations. For exam-
ple, in a one-way within-subjects design, if the data possess
compound symmetry, the noncentrality parameter is


 �
n

1 � �
�
j�1

p ��j � �

� �2

. (58)

The RMSSE, �, as defined in Equation 12, though still
an appropriate measure of effect size, cannot be esti-
mated directly using the exact techniques discussed in
this article, unless � is known. For a detailed discussion
of this issue in the context of point estimation in meta-
analysis, see Dunlap, Cortina, Vaslow, and Burke (1996).

3. In multivariate analysis, the noncentrality parameter
includes information about the variances and correlations of
the dependent variables. For example, when two popula-
tions are compared on k dependent variables, using Hotell-
ing’s T2 with two independent samples of size n1 and n2, the
standard F statistic has k and n1 � n2 � k � 1 degrees of
freedom and has a noncentral F distribution with a noncen-
trality parameter 
 that is a simple function of the squared
population Mahalanobis distance �2:


 �
n1n2

n1 � n2
�2. (59)

The latter, computed as

�2 � ��2 � �1���
�1��2 � �1� (60)

with �1 and �2 the population mean vectors, and � the
common covariance matrix, may be described as a sum of
squared orthogonalized and standardized mean differences.
Consequently, a natural analogue of Equation 12 that takes
into account the number of dependent variables is

� � ��2

k
. (61)

A confidence interval on �2 may be calculated easily (Rei-
ser, 2001) from a confidence interval on 
, using the results
of Equation 59. This interval may, in turn, be transformed
into a confidence interval on � using Equation 61.

We see that in one of the contexts discussed above (re-
peated measures), dependencies between measures are an
annoying confound that must be removed from consider-
ation. In another (the case of two populations), they are an
essential ingredient for proper evaluation of effect size. In
some of the problematic cases discussed above, and in
situations where the standard ANOVA statistical assump-
tions are inappropriate, resampling methods such as boot-
strapping can be used to obtain appropriate confidence
intervals.

The width of a confidence interval often is described as
indicating precision of measurement. However, as Steiger
and Fouladi (1997, pp. 254–255) pointed out, this relation-
ship is less than perfect and is seriously compromised in
some situations for several reasons. The width of a confi-
dence interval is itself a random variable and is subject to
sampling variations. Moreover, the confidence intervals are
truncated at zero to avoid improper estimates. In extreme
cases, a confidence interval might actually have 0 as both
endpoints. This zero-width confidence interval obviously
does not imply that effect size was determined with perfect
precision.

Focused Contrasts or Omnibus Hypotheses?

In an early version of this article, I concentrated almost
exclusively on omnibus measures of effect size. Several
reviewers have objected that confidence intervals on
measures of standardized effect size such as �2 and the
RMSSE were, to paraphrase, an elegant solution to the
wrong problem. These writers have echoed the view of
Rosenthal et al. (2000), who stated that “omnibus ques-
tions seldom address questions of real interest to re-
searchers, and are typically less powerful than focused
procedures” (p. 1).

I share an enthusiasm for focused contrasts and recom-
mend them in lieu of an omnibus test whenever researchers
have clear ideas about linear contrasts. Moreover, I believe
that not enough researchers have been trained to look care-
fully for ways to phrase their ideas as contrasts. However, I
think that dismissing the improvements to the use of the F
statistic suggested in this article ignores several important
realities.

First, much research in the social sciences is explor-
atory, and an omnibus F test in such circumstances may
be the prelude to subsequent examination of unplanned
contrasts. In such cases, an overall measure of the
strength of effect sizes, and the precision with which they
have been determined, may alert the researcher in ad-
vance to a lack of overall precision in the experimental
design. Second, when one is comparing several studies
that have reported overall F tests, comparing confidence
intervals on standardized effect size measures can be very
useful in resolving apparent disparities in experimental
outcomes.

As it turns out, the confidence interval on �contrast
2 , one

standardized measure of omnibus effect size, is closely
related, conceptually and computationally, to the procedure
for computing a confidence interval on �2. The latter index
examines the squared multiple correlation between ob-
served data and a set of contrast weights, whereas the
former examines the squared correlation between the data
and one set of contrast weights with the variation predicted
by the complementary contrasts partialed out. Thus, the
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same technology that I find useful for omnibus tests may be
applied directly to contrasts.

I believe that reporting an exact confidence interval on
�contrast is substantially more informative than simply re-
porting the raw coefficient. And, to be clear, I fully support
concentration on focused contrasts in lieu of omnibus tests
whenever the experimenter has firm questions that suit the
contrast analysis framework.

Some Recent Objections to Standardized Measures
of Effect Size

Revised hypothesis-testing strategies for ANOVA require
specification of target values of a standardized measure of
effect size. The confidence interval approach is more re-
laxed but strongly tends to lead the experimenter to consider
which overall effect sizes qualify as trivial and which are
nontrivial in a particular application.

Although many writers have emphasized the value of
standardized measures of effect size in power analysis
and sample size estimation, standardized effect size mea-
sures do have some shortcomings. As a nonlinear com-
bination of several sources of variation in an experiment,
they reduce several values into one and are of necessity
less precise than similar indices computed on a focused
contrast. Moreover, ANOVA effects as used in the cal-
culation of the noncentrality parameter 
 in the omnibus
test may or may not correspond to experimental effects as
commonly conceptualized (see, e.g., Steiger & Fouladi,
1997, pp. 244 –245), and focused contrasts can get at
such experimental effects much more effectively than an
omnibus procedure. Recently, Lenth (2001) suggested
dispensing with standardized measures of effect size al-
together in the context of power analysis and sample size
estimation. His main justification was that combining
information about raw effects (i.e., mean differences) and
variation ignored a possible confounding impact of reli-
ability of measurement.

Reconciling the Interval Estimation and Minimal-
Effect-Testing Approaches

As stated at the outset, this article discusses two major
approaches that might be used to replace the traditional F
test in ANOVA. The noncentrality interval estimation
approach emphasizes estimation of some function of
overall effect size, along with an indication of the preci-
sion of the measurement. The dual hypothesis testing
approach replaces the hypothesis of nil effect with two
hypotheses, one that the effect is trivial, the other that it
is nontrivial.

The approach I personally favor is confidence interval
estimation on some standardized measure of overall effect
size. This approach may be viewed as replacing hypothesis
testing entirely, yet it can be used to perform both kinds of

hypothesis tests required by the dual hypothesis-testing
framework. Specifically, one simply examines, simulta-
neously, whether the confidence interval excludes a trivial
effect value on the left or right. If, for example, the confi-
dence interval lies entirely above the cutoff point for a
trivial effect, one rejects the hypothesis of triviality. If the
confidence interval lies entirely below the cutoff point, one
rejects the hypothesis of nontriviality.

Moreover, the confidence interval approach, being an
exact procedure, also provides all the information available
in the standard F test. For example, the F test results in
rejection at the .05 level if and only if the 90% confidence
interval for � excludes zero.

The hypothesis-testing approach offers advantages as
well. For one, it keeps the analysis within the comfortably
familiar bounds of hypothesis testing. For another, it is
computationally easier—one may perform the hypothesis
test without extensive iteration, and so it may be performed
with a wider range of available free software. Another
advantage is that, by simultaneously analyzing power for
both a test of triviality and a test of nontriviality, the user
can be relatively certain that the confidence interval, if
calculated, will have enough precision to determine whether
effects are trivial or not.

Standardized Effects and Coefficients of
Determination—A Caution

Any statistical technique offers opportunity for abuse and
misuse, especially if the technique is used mechanically and
without taking into account the special circumstances sur-
rounding a particular set of data. Abelson (1995) discussed
in detail how important it is to remain open-minded when
judging the importance of effect sizes. In some cases, ef-
fects that seem small may be quite important. This should be
kept in mind before effects that are nonzero, but seemingly
trivial, are dismissed. Abelson’s comments are similar to
Cohen’s (1988, pp. 534–535) in his chapter on special
issues in power analysis.

Casting a Vote for Change

A fundamental contribution to behavioral statistics by
Cohen (1962) was to demonstrate that many studies lack
sufficient statistical power. The initial emphasis on power
analysis spearheaded by Cohen (1962) has now given
way to a more sophisticated emphasis on precision of
estimation.

Confidence intervals on standardized measures of effect
size allow one to assess how precisely effects have been
measured and simultaneously assess whether the experi-
ment has ruled out (a) the notion that effects are trivial and
(b) the notion that they are nontrivial. The procedures are
straightforward and offer obvious benefits. It is time for a
change. Yet there are numerous obstacles to change in
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behavioral statistics practice. A significant obstacle is the
dominant influence a few commercial statistical packages
such as SPSS and SAS have on practice in the field. The
way psychology has operated in the past, procedures are
unlikely to be used until they have been implemented in a
widely used statistics package, and commercial statistics
packages tend to be conservative toward new approaches.

In the final analysis, the impetus for change may have
to come from journal editors and practitioners, some of
whom have resisted change for a variety of reasons
discussed by Thompson (1999). Fortunately, the Internet
makes it possible to distribute innovative software to
practitioners very easily at virtually zero cost. There is no
longer any reason to report a squared multiple correla-
tion, an ANOVA F statistic, or a focused contrast t test
without providing information about confidence intervals
on standardized effects. Each reader of this article can
cast votes for change by obtaining the freeware I (and
other authors) have made available, and then, when re-
viewing articles that report omnibus tests and focused
contrasts without associated intervals, taking two simple
steps: (a) performing their own calculation of confidence
intervals on standardized effect size and (b) requesting
that the author include this information in the published
article.
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Appendix A

The Relationship Between �2 and 
 in One-Way ANOVA

Define, for the p sample means,

sx� �

2 �
1

p � 1 �
j�1

p

�x� �j � x� ���
2. (A1)

The corresponding population quantity is

s�
2 �

1

p � 1 �
j�1

p

��j � �� ��
2 �

��X�Q1X�

n�p � 1�
, (A2)

where �, X, and Q1 are as described in Equations 29 through 38.
In a balanced, one-way ANOVA, with p groups and n observations
per group, SStreatments � n(p � 1)sx��

2 .
Consider any estimator �̂ of a parameter �. The probability limit

of �̂, denoted plim(�̂), is equal to a value c if and only if for any
error tolerance � � 0, we have

limn3� Pr���̂ � c� � �� � 1.

The notion of a probability limit is closely related to that of
consistency, in that �̂ is a consistent estimator for � if and only if
plimn3�(�̂) � �. In what follows, for brevity of notation, I simply
write plim(X) rather than plimn3�(X). I use a number of well-
known results. In particular, if plim(X) and plim(Y) exist, then

plim�X � Y� � plim�X� � plim�Y�,

plim�X/Y� � plim�X�/plim�Y�,

plim�XY� � plim�X�plim�Y�.

Moreover, the plim of a sample moment is equal to the corre-

sponding population moment. We define �2 as plim(R2), that is, the
value that R2 converges to in an infinite population. Then

�2 � plim�R2� � plim� SStreatments

SStreatments � SSerror
�

�
plim	n�p � 1�sx� �

2


plim	n�p � 1�sx� �

2
 � plim	p�n � 1�MSerror


�
plim�sx� �

2�

plim�sx� �

2� � limn3��p�n � 1�

�p � 1�n� plim�MSerror�

�
s�

2

s�
2 �

p

p � 1
�2

�
�p � 1�s�

2

�p � 1�s�
2 � p�2 . (A3)

Combining Equations A1 through A3, we obtain

�2 �

��X�Q1X�

n

��X�Q1X�

n
� p�2

(A4)

and

Ntot

�2

1 � �2 � Ntot

��X�Q1X�

np�2 �
��X�Q1X�

�2 � 
, (A5)

where 
 is as defined in Equation 34.
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Appendix B

The Distribution of the F Statistic for rcontrast
2

Assume the general linear model as described in Equations
29 and 30. For any full column rank matrix A, define PA �
A(A�A)�1A�, and QA � I � PA, with I a conformable identity
matrix. Define 1 to be a column of 1s. Partition X as X �
[1 x1 X2]. x1 contains replications of the contrast weights
for the contrast being evaluated, so that the ith value in x1 is the
contrast weight for the group that yi is in, and X2 contains a set
of columns that are the orthogonal complement of the contrast
weights in x1. Thus, for example, if x1 contains contrast weights
for evaluating linear trend, X2 would contain quadratic and
cubic contrast weights (or some full rank transformation of
them). The regression weight vector � is partitioned accord-
ingly as

� � � �0

�1

�2

�. (B1)

Define � as a vector of the population means of the p groups,
and c as the linear weights for the contrast of interest. In this case,
the contrast of interest is

� � c��, (B2)

and because x1 contains n replications of the elements of c, and
E(�) contains n replications of the elements of �, we have

c�c � x�1x1/n (B3)

and

�1 �
n�

x�1x1
. (B4)

I first demonstrate that an F statistic may be constructed for
rcontrast

2 . Rosenthal et al. (2000) defined rcontrast
2 as the squared

partial correlation between y and x1 with X2 partialed out. This
sample statistic can be computed as the following ratio of qua-
dratic forms in y:

rcontrast
2 �

y�Px1y

y��I � PX2 � P1�y
. (B5)

Consider the statistic

Fcontrast �
rcontrast

2

�1 � rcontrast
2 �/�Ntot � p�

�
y�Px1y

y��I � Px1 � PX2 � P1�y/�Ntot � p�
. (B6)

This statistic is a ratio of two quadratic forms, in the general
form

y�Ay/a�2

y�By/b�2 , (B7)

where a � 1, and b � Ntot � p. From Searle (1987, pp. 233–234),
Fcontrast has a noncentral F distribution with a and b degrees of
freedom and noncentrality parameter


contrast � ��X�AX�/�2 (B8)

if A�2 is idempotent, B�2 is idempotent, AB � 0, and a and
b are the ranks of A and B, respectively. These four properties
are easily established by substitution and the fact that x1, X2,
and 1 are pairwise orthogonal. The orthogonality implies that
the noncentral F distribution has a noncentrality parameter
equal to


contrast �
��X�Px1X�

�2 �
�1

2x�1x1

�2 , (B9)

and the ranks of the A and B are 1 and Ntot � p, respectively. Next,
we derive the relationship between 
contrast and the population
equivalent of rcontrast

2 .
We may write rcontrast

2 as follows:

rcontrast
2 �

Fcontrast

Fcontrast � p�n � 1�

�
n�̂2/MSerror�c�c�

n�̂2/MSerror�c�c� � p�n � 1�

�
�̂2

�̂2 � �c�c�MSerrorp�n � 1�/n
. (B10)

We define �contrast
2 as

�contrast
2 � plim�rcontrast

2 �

�
plim��̂2�

plim��̂2� � p�c�c� limn3��n � 1

n � plim�MSerror�

�
�2

�2 � p�c�c��2 . (B11)

Hence,

�contrast
2

1 � �contrast
2 �

�2

p�c�c��2 , (B12)

Appendix continues
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which, after substitution of Equations B3 and B4, becomes

�contrast
2

1 � �contrast
2 �

�x�1x1�
2�1

2/n2

�x�1x1�p�2/n

�
�x�1x1��1

2

np�2

�
�x�1x1��1

2

Ntot�
2 . (B13)

Recalling the result of Equation B9 for 
contrast, we have thus
shown that


contrast �
�x�1x1��1

2

�2 � Ntot

�contrast
2

1 � �contrast
2 . (B14)
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