CHAPTER 4

MODELING GROWTH
USING MULTILEVEL AND
ALTERNATIVE APPROACHES

Janet K. Holt

In recent years, the array of linear growth modeling techniques has expand-
ed greatly, from traditional methods of univariate or multivariate repeated
measures analysis to more flexible random coefficients models that include
multilevel growth models, latent growth curve models, and growth mix-
ture modeling. This chapter provides general descriptions of and contrasts
methods across three classes of growth models: multilevel growth model-
ing, including linear, quadratic, piecewise, and shift models; latent growth
curve models, including models for linear, quadratic, and estimated growth
curves; and growth mixture models, including estimation and prediction of
latent growth classes as well as prediction of distal outcomes. While not an
exhaustive list of growth modeling methods, this is a comparison of some
of the more popular, cutting-edge methods in the literature. In this chapter,
I demonstrate how analysts can use these classes of growth models in lon-
gitudinal or developmental studies to model change across time, describe
how to use each of these models to address substantive questions about
change, and summarize the strengths/weaknesses, assumptions, and data
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requirements for each of these classes of models. I begin with a general
discussion of each approach and provide examples from the research lit-
erature. For selected models, an applied demonstration of the technique
is also included.

MULTILEVEL MODELING

Reconceptualizing Longitudinal Models
As Multilevel Models

Traditional approaches for analyzing longitudinal data utilize repeated
measures ANOVA or MANOVA techniques; however, these methods place
severe constraints on the form of the data. The two most problematic con-
straints in repeated measures analyses are that all subjects must have an
equal number of data points and that the data collection schedule needs
to be time-structured, such that the planned schedule of data collection must
be at the same times for all individuals. By default, these traditional longitu-
dinal analyses use listwise deletion to discard participants without full data
for all time points. This often results in a much-reduced data set that does
not accurately represent the originally sampled population and that is likely
to be biased.

In contrast, in multilevel modeling (MLM), the data are a series of ob-
servations nested within the individual; therefore, the structure of the data
can be person-specific and much more flexible. This approach allows for
data that are collected at unequally-spaced waves of data collection and that
are time-unstructured (i.e., different data collection schedules for different
individuals) and unbalanced (i.e., different number of observations for each
individual). This flexibility also can translate to person-specific growth tra-
jectories. Analysts can estimate the variation in growth patterns and investi-
gate relationships with covariates to model both the intra- and inter-person
variability. This reconceptualization of growth modeling results in a flexible
modeling approach that more aptly captures the inherent complexity in
growth processes.

Multilevel Linear Growth Models
Analysts can use the basic multilevel linear growth model to assess both
initial status and linear change over time. Equations 4.1 and 4.2 describe

this model with random coefficients:

Yy = To; + T, (time — time,),; + ¢, (4.1)
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To; =Boo + 7;

0i BOO 0i (42)
Ty =B+

for i=1,..., nsubjects across ¢ = 1,..., T waves. The growth parameters,

m,;and &, represent the intercept and linear rate of change, respectively,
for person i, and ¢, is the within-person residual not accounted for by the
specified growth parameters. If time 1 is the initial time point assessed in
the data, then the intercept represents the initial value on the dependent
variable. The level-one equation (see Equation 4.1) is the individual growth
model and specifically describes the outcome at time 1, the intercept and
the rate of change for person i, and random fluctuations around the lin-
ear growth trajectory. The level-two equations (see Equation 4.2) describe
the between-person variability in the growth parameters: the intercepts, ,,,
and the linear slopes, %, The level-two residuals, 7,,and r,, represent the
random, between-person differences in the growth parameters, 1, and =, ,
respectively; and the fixed effects in this model, B, and B,,, represent the
average intercept and the average rate of growth, respectively. The level-two
- equations allow us to model the variability in the growth parameters across
persons. Together, Equations 4.1 and 4.2 represent the unconditional lin-
ear growth model with random slopes and intercepts.

Data Requirements and Assumptions

Data Requirements

MLM allows the analysis of incomplete data as long as data are missing
at random (MAR; i.e., the missingness pattern can be related to observed
values of other variables in the data set; Little & Rubin, 2002). As previ-
ously mentioned, multilevel growth models do not require the data to be
time-structured or balanced. However, these models do require one more
wave of data than the number of growth parameters in the level-one growth
model (see Equation 4.1). Therefore, a linear model with two growth pa-
rameters in the level-one equation, ©,, and &, , would require at least three
waves of data. This is the minimum requirement, but one can estimate the
parameters with greater precision with additional waves of data.

Assumptions

MLM makes assumptions regarding both the random components of
the level-one and level-two models as well as specification assumptions
about the relationship of the variables to the random components. For
a detailed explanation of assumptions, see Raudenbush and Bryk (2002,
pp- 255-256). One important assumption is that both level-one and level-
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two residuals are independently and normally distributed. Nonnormality
introduced at level one will bias the standard errors at both levels one
and two. Examination of the residuals with normal probability plots is an
accepted procedure for checking whether the data meet this assumption.
Analysts need to construct separate normal probability plots for each level
of residuals (e.g., ¢,, 7,;, 7,,). To normalize the data and resolve many non-
normality problems, analysts can use common data transformation proce-
dures. (See Judd & McClelland, 1989, for an excellent discussion of data
transformations.)

Form of the Data

General data analysis software typically lays out data on repeated obser-
vations in a multivariate, or wide, format, where each observation is rep-
resented by a different variable in a separate column within the database.
For example, Figure 4.1 presents an SPSS screen shot of data on reading
achievement for a sample of children across five waves of data collection:
1, 2, 3, 4, and 8. In this dataset, described in more detail in a later section,

2 *Red Set Sumimer School Variables 1% [DalaSel1] - SPSS Bata | diter

Figure 4.1 Multivariate, or wide, data layout.
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data were collected at five “terms,” that is, fall and spring of kindergarten,
fall and spring of first grade, and spring of third grade. Note that the analyst
formatted each measure of reading achievement as a separate column in
this data layout and that there is only one row per person or child ID. How-
ever, when conducting growth analyses, it is helpful to represent each time
point as a separate case. Additionally, if the data are not time-structured
and different persons have different data structures, it is cumbersome to
structure the data in a multivariate format. For these reasons, analysts orga-
nizing repeated measures data for MLM often use a person-period, or long,
data set. A person-period data set has multiple rows per person, one for
each time point at which the person has a measurement. The analyst enters
a variable coding the passing of time (e.g., wave, time, age, term, grade) as
a separate variable in the data set. In this data layout, the number of rows
equals the number of observations, whereas in a multivariate format, the
number of rows equals the number of persons. Figure 4.2 compiles the
time-varying measures of reading achievement into a single column called
“read,” and in this format, the variable “term” indicates the wave in which
data collection occurred. Also note that there now are five rows of data per
child, one for each time period of data collection.

1
p)
3
4
8
i
p)
3
i
[
1
12}0162074C 3
13j0102014C 3
18}0102014C i
15]0102014C 8
16{0108011C i
17}0105011C 2 2480
3
4
8
i
3
3
4
[
1
2
3
4
8
i
p)
3

18J0105011C
19jor05011C
2]0i0s011C
21{0169021C
22J0189021C
23}0169021C
2410169021C

Sim o 2l IRINININININININININININININI N

i 2]0201022C
Lo o01022C
BI0201022¢

Figure 4.2 Person-period, or long, data layout.
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Treatment of Time

To measure the passing of time, analysts typically enter a variable for
time into the level-one equation, as in Equation 4.1. However, depending
on the research scenario, the analyst may use an alternate variable for time
that more closely corresponds to the research design and occasions of mea-
surement. For instance, the analyst may use age, denoted in years, months,
or even days, for developmental research studies; on the other hand, in
school-based studies, analysts frequently use grade level to describe the pas-
sage of time.

No matter the variable chosen to denote the passage of time, the analyst
should give careful consideration to centering this variable in multilevel
modeling because the interpretation of the intercept, B,,, and all other low-
er-order growth parameters depends on the centering point. For instance,
if the time series ranges from 24 months of age to 36 months of age and
has data available at 3-month intervals, then depending on the centering of
age, B,, could represent the average outcome at the onset of the data col-
lection period (i.e., 24 months), at the midpoint (i.e., 30 months), or at the
end of the data collection period (i.e., 36 months). Biesanz, Deeb-Sossa,
Papakakis, Bollen, and Curran (2004) suggest that the coding of time in
multilevel modeling should facilitate interpretability and should focus on
the main period of interest in the study.

To illustrate the effects of centering, consider the situation in which a
researcher is studying the effects of test coaching by monitoring test scores
just prior to the coaching sessions, and at the quarterly periods during and
immediately following the 12-week coaching session. Centering at 0 weeks
(i.e., initial status), 6 weeks (i.e., midpoint), and 12 weeks (i.e., final sta-
tus) will result in different interpretations of B, If the researcher coded
the first week as 0, B,, would represent the expected value of coaching at
initial status, just prior to the onset of coaching. This may not be the most
desired interpretation for B, because it is before the treatment actually oc-
curs. In contrast, centering at 6 weeks would require recoding the origin
to (week — 6) and would result in an intercept that is the average outcome
midway through coaching, an interesting time point if the growth process
is of interest. Centering at final status would require recoding the origin to
(week — 12) and would allow an interpretation of the intercept after coach-
ing is complete, which may be most appropriate if the final outcome is of
greatest interest.

Centering the time variable does not affect B,, in a linear growth model
because B, is a constant linear rate of growth across time—in this example,
from 0 to 12 weeks. Likewise, centering time does not affect the within-
person variance or the residual variance in rate of change; it can, however,
drastically affect both the variance of the intercept and the covariation be-
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tween the intercept and rate of change. Therefore, if coaching reduces the
variability in test scores, then the random variance in the intercept and the
correlation between the intercept and growth rate would decrease as the
centering point moves from initial status to midpoint to final status. Thus,
decisions regarding centering should take into consideration the impact
of the centering point on the interpretation of the intercept, the residual
variance of the intercept, and the correlation between the intercept and
rate of change.

Variance-Covariance Structures S

The unconditional growth model in Equations 4.1 and 4.2 has an implied
variance of ¢, equal to 62, the within-person residual variance, and a vari-
ance/covariance structure of the unique person effects, 7,,and 7, equal to:

T T
T= 00 01 (4.3)
T  Tn

(Raudenbush & Bryk, 2002). T, referred to as the tau matrix, is the level-
two covariance structure for the model that Equations 4.1 and 4.2 describe.
Assuming time is centered at initial status, the variance terms, T,, and T,,,
describe the variance in initial status and rate of growth across individu-
als, respectively, whereas the covariance term, T, or T,, describes the cova-
riation between initial status and rate of growth across individuals, which
also can be expressed as a correlation. With data from three or more time
points (multiwave data), the correlation between initial status and rate of
growth provides an estimate of the correlation between true initial status
and growth rate (Raudenbush & Bryk, 2002), although floor or ceiling ef-
fects at particular time points can influence the estimate. As noted previ-
ously, this correlation can vary with a change in centering point. Depending
on the software package used, various options are available for modeling
alternative covariance structures within a multilevel framework. These are
more fully described under software options.

Modeling Change with Covariates

The structure of the multilevel model allows the incorporation of co-
variates at levels one and two. Consequently, analysts can use time-varying
covariates at level one to account for variation in observations within indi-
viduals, and time-invariant covariates at level two to account for variation in
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growth parameters across individuals. Combined, both types of covariates
allow for the formulation of rich models of change.

Time-Varying Covariates

Analysts can incorporate covariates into level one of the model to ac-
count for within-person changes that occur across observations. The level-
two equations will model each of the level-one parameters. For example,
Equation 4.4 (with time centered at time,) adds a time-varying covariate, a,,
to level one, and Equation 4.5 models the associated parameter T,, in a
new level-two equation. Depending on whether 7, has s1gmﬁcant variation
across individuals, the analyst is able to fix the equation ({.e., remove this
residual from the level-two equation) or treat it as random (i.e., keep the
residual in the level-two equation). Analysts can use a significance test of
the variation of the 7, residuals to inform this decision. However, for mod-
els with more than two or three random effects, estimation difficulties may
occur as T becomes increasingly complex. The number of elements in the
tau matrix is r*(r+1) /2, where r is the number of random effects at level
two, because we normally estimate the variances for each random effect as
well as the covariances between all pairs of random effects. For this reason,
parsimony is an important consideration when determining which level-
one predictors to include as random and which effects to fix at level two.

Vi =Teo; +Ty;(time —time, )+ Ty,a,; +e, (4.4)
T =Boo + i
;=B +7; (4.5)
T =Boo + 7

Time-Invariant Covariates

One of the strengths of multilevel modeling is the ability to model cross-
level effects, or interactions between variables measured at different levels
of analysis. Within a growth modeling framework, this allows for model-
ing the relationships between effects that are repeated measures (i.e., mea-
sured within-persons) and individual-level effects (i.e., measured at the per-
son level). Covariates assessed at the person level are termed time-invariant
covariates, and analysts easily can incorporate them into the level-two equa-
tions of the multilevel growth model. Examples of time-invariant covari-
ates include gender, or race/ethnicity. As an alternative to Equation 4.5,
Equation 4.6 is a series of level-two equations that analysts could formulate
to model the growth parameters in Equation 4.4. The addition of X, a time-
invariant covariate, to the level-two equations allows the introduction of a
person-level variable to study the effects of that variable on the intercept via
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B,,; the effects of X, on the linear growth rate via B,,, and the effects of X;on
the time-varying covariate via B,,. These latter two parameters represent the
cross-level interactions of a person-level variable, X, with the within-person
effects of Equation 4.4. Note that Equation 4.6 includes the same predictor
in all level-two equations; however, the analyst may choose to include differ-
ent time-invariant predictors within any of the level-two models.

T =Boo +Bo1 X + 7
T, =Bio + B X +7; (4.6)

Ty; =Boo +Bo1 X + 75

Modeling Change in Growth Rates

Although a simple linear model of change is appropriate for many
growth scenarios, there are instances in which the linear model is not the
best fit, and the analyst should examine other alternatives. Consider the
situation in which subjects grow in a linear trajectory but then growth slows
and the rate of change lessens (i.e., decelerates) or, alternatively, the growth
increases (i.e., accelerates) over time. As this description illustrates, more
complex growth curves may involve changes in the growth rate. Alternate-
ly, the change in growth rate may be abrupt, and thus represent separate
phases of growth. Deviations from a constant linear rate of growth may be
due to physical, cognitive, or other internal developmental processes or can
be due to transitions that occur in the society or institutions to which the
subjects belong. Whatever the cause, analysts often can examine resultant
changes in growth rates by using growth models that extend beyond the
simple linear form. The following sections on polynomial multilevel growth
models and multiphase multilevel growth models will consider these alter-
natives to simple linear growth.

Polynomial Multilevel Growth Models

The addition of terms that include higher-order time variables (e.g.,
time-squared, time-cubed) can be used to account for changes in growth
rates. A quadratic growth curve includes the square of the time variable,
and the corresponding coefficient represents the degree of acceleration
or deceleration in growth that occurs over time; that is, whether or not the
curve is tapering off (decelerating) or rapidly increasing (accelerating) as
the time variable increases. Typically, analysts test the quadratic model with
alikelihood ratio test to determine if it provides a better fit than the linear
model. This is done by constructing an hypothesis test comparing the re-
stricted model (e.g., linear model) to the more complex alternative model
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(e.g., quadratic model). The likelihood ratio test compares deviances and
df for these two nested models using the ? difference test. A statistically
significant ? test indicates that the more complex model is warranted. (See
McCoach & Black, 2008, Chapter 7 this volume for more details about the
chi-square difference test). Equation 4.7 describes the unconditional qua-
dratic growth model:

Y5 =Te; + T, (time — time, ) + Ty, (time — time,)* + e,

i = Boo + 7 (47)
Ty =B+ 7, ‘
To; = Boo + 7

In this model, the interpretation of the linear coefficient changes some-
what from the linear growth model. Recalling that time is centered at the
first time-point of data collection, the intercept, T;, remains the initial status
for person i. However, 7,, now represents the rate of change at initial status
(i.e., when time— time, = 0) for person i. We refer to this effect as the instan-
taneous rate of change at initial status. This change in interpretation arises
because the quadratic model no longer has a single linear rate of change;
instead, there is a different rate of change at every time point. Rates of
change in a quadratic model are estimated by the slopes of lines tangent to
the growth curve at each point on the curve. These “simple-slopes” change
across the entire time-span of the growth curve. In a polynomial model, the
simple-slopes are equivalent to the first derivative, with respect to time, of
the level-one equation evaluated at each specific value of time; for the qua-
dratic model, the equation for these simple-slopes is: Tt ; + 27, (time — time,).
Because time is centered at time, in this example, analysts can interpret T,
as the instantaneous rate of growth at initial status. If the analyst recentered
the data to the midpoint, then 1, would represent the instantaneous rate of
change at the midpoint. The interpretation of ©,; depends on the placement
of the origin for time (Biesanz, et al., 2004).

The new level-one parameter, T, represents the acceleration/decelera-
tion apparent in the growth curve for person :across time. When =, is posi-
tive, acceleration is occurring, and the growth curve is convex to the time
axis (i.e., the instantaneous linear growth rates are increasing). In contrast,
if m,, is negative, then deceleration is occurring, and the growth curve is
concave to the time axis (i.e., the instantaneous linear growth rates are
slowing). This new parameterization of growth requires at least four time
points because there are three growth parameters in the level-one equation
of the quadratic growth model: &, &, and &,,.
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The level-two equation for m,, is a model for the acceleration/decelera-
tion parameter for person i, and describes its variation as a function of the
grand mean for acceleration/deceleration, B,,, and the unique effects of
the person (see Equation 4.7). Overall, the person-level parameters, BOO, Bm,
and B,,, represent the population average intercept at initial status, the aver-
age instantaneous rate of growth at initial status, and the average accelera-
tion/deceleration across time, respectively. The residuals, 7, , 7,,, and 7,,, are
the unique effects F)f person ion their initial status, instantaneous growth at
initial status, and acceleration/deceleration rates, respectively.

The unconditional quadratic growth model has random slopes and in-
tercepts, an implied variance of ¢, equal to 6% and a variance/covariance
structure of 7, r,, and 7,, equal to:

Too To Tee
T=[{T, T T (4.8)

Tao T Te

(Raudenbush & Bryk, 2002). Analysts could expand this model further to
include individual effects on the mean growth parameters (i.e., a conditional
growth model) by incorporating level-two time-invariant covariates, similar in
structure to Equation 4.6. As with the linear model, the level-two covariates of
the different growth parameters do not need to be the same. Additionally, or-
ganizational effects on the person-level parameters can be assessed through a
three-level model (e.g., time nested within individuals, nested within organi-
zations) by incorporating level-three time-invariant covariates.

Analysts also can formulate more complex polynomial growth models.
For example, a cubic model includes a parameter for time-cubed. The pa-
rameter for the cubed term represents the change in the acceleration or
deceleration that is occurring over time. If examined graphically, a cubic
model has one inflection point, indicating that the quadratic acceleration/
deceleration pattern is changing. In multilevel polynomial growth models,
analysts interpret the highest-order term (e.g., cubic parameter) across the
full range of the time variable, whereas they interpret the lower-order terms
(e.g., intercept, linear, and quadratic parameters) at the centering point.
Researchers need to weigh the advantages of modeling a more complex
model with the added data requirements. For instance, a minimum of five
waves would be needed to test a cubic model. However, if this is not a trend
that they would expect or be interested in, researchers may opt to forego
the more complex model and analyze a less complex polynomial model
that could be estimated with greater precision.
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Examples From The Literature

Using data from the Longitudinal Study of American Youth (LSAY), Ma
(2005) studied both student and school effects on the rate of mathematics
achievement growth from 7th through 11th grade using a three-level lin-
ear growth model. Level one modeled the intra-individual variation across
time, level two modeled the inter-individual variation within schools, and
level three modeled the inter-school variation. The outcome variable was
mathematics achievement, and the student-level predictors included gen-
der, race, age, and other demographic variables. The school-level predic-
tors included measures of both school context and school climate. Ma com-
pared growth rates and effects of the student-level demographic variables,
and effects of school-level context and climate variables, on mathematics
achievement growth between students who experienced early acceleration
in their mathematics instruction and those who did not, as well as among
those in regular, honors, and gifted classes.

In a growth study of the onset of tense marking (a measure of gram-
matical development in young children), Hadley and Holt (2006) con-
structed quadratic growth models to estimate the growth rates in tense
marking from 24 to 36 months of age in a sample of slow-developing lan-
guage learners, assessed at 3-month intervals. The positive coefficients
for both the linear and the quadratic components indicated that growth
was increasing and accelerating across time. Hadley and Holt expected
that children’s changes over time in their mean length of utterance
(MLU) also would affect their developmental trajectories in tense mark-
ing. Including the time-varying covariate, MLU, which also was assessed
in 3-month intervals from 24 to 36 months, controlled for the variation in
children’s growth in tense marking that was not due solely to the child’s
developmental growth over time but also to the individual child’s change
in MLU. The researchers also modeled the interaction between MLU and
time in order to determine if the tense marking growth rate covaried with
changes in MLU.

Hadley and Holt (2006) also examined the influence of several time-
invariant covariates on the growth parameters to determine if environmen-
tal factors (e.g., maternal education) or maturational factors (e.g., family
history of speech, language, or learning disabilities) covaried with the av-
erage level of tense marking and its linear growth rate in slow-developing
language learners. They assessed the time-invariant covariates at the initial
evaluation and modeled their influence on the growth parameters as well
as on the time-varying covariates.
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Application—Linear and Quadratic Growth Models

To assess growth in reading achievement from kindergarten through
third grade, I used a subsample of data from the kindergarten cohort of the
Early Childhood Longitudinal Survey (ECLS-K; » = 16,400). The students
completed cognitive reading assessments in the fall and spring of kinder-
garten, fall and spring of first grade, and the spring of third grade. These
data were not gathered at equal intervals: students did not complete the
assessments in the fall and spring of second grade or the fall of third grade.
Furthermore, a subsample of only 30% of the base-year cohort completed
the assessment in the fall of first grade (National Center for Education Sta-
tistics, 2004). Therefore, not all subjects had an equal number of data col-
lection points. To simplify the presentation of this illustrative example, I did
not use sampling weights in the current analyses. Full maximum likelihood
was used for parameter estimation.

I formulated multilevel polynomial growth models to 1) determine the
growth trajectory for reading achievement from kindergarten through third
grade, 2) determine whether a time-varying covariate, changing schools be-
tween terms, affects the reading achievement, and 3) determine whether
the growth parameters and the effect of changing schools vary depending
on the time-invariant predictor, gender. Figure 4.3 graphs a random sam-
ple of 1% of the cases by gender. It is apparent that reading achievement

Female Male
150.000

100.000 =

50.000~1

Reading Achievement

I I
4 5 6 7 8

Figure 4.3 Individual growth curves of reading achievement as a function of
gender for a selected sample from kindergarten through third grade.
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growth is decelerating (slowing down) from kindergarten to third grade
and that a linear growth model would not account for this deceleration. In
these graphs, time ranges from 1 to 8, representing each term from fall and
spring of kindergarten to fall and spring of third grade.

Although the graph of individual growth curves can illustrate general
trends, a multilevel statistical analysis directly addresses the questions of
interest. To assess reading achievement growth, I first formulated a two-
level linear growth model (Model 1). Next, I formulated a quadratic growth
model (Model 2) and tested the difference in the deviances to determine
if the more complex quadratic model yielded a significantly better fit to
the data. I then added the time-varying covariate (1 = school change, 0 =
no school change) to the quadratic growth model (Model 3) to determine
if there was a significant relationship between changing schools and read-
ing achievement, controlling for growth, as well as if the growth remained
statistically significant after controlling for the effect of changing schools.
Finally, I entered the level-two covariate, gender (1 = male, 0 = female) as
a predictor of the growth parameters and of the impact of the time-varying
covariate (changing schools) on reading achievement (Model 4).

Results for the four models are presented in Table 4.1. Equation 4.9 rep-
resents the most complex model, Model 4; those parameters not included
in Models 1—3 would be set to zero in this general model. Time was mea-
sured by term, and centered at fall of first grade. Note that Equation 4.9 con-
tains a separate level-two equation for each time-varying effect at level one.

Reddlng ACht,' =1t0,'+1t1,~(term—termﬂst)ﬁ+ (4.9)
Ty (term— lermp g )z + Ty (school change),; + e,

o =Boo + Boi(gender); + 7
T =Bio + Bri(gender); + 7
Ty =Bao + Boi(gender); + n;
Ta; =PBso + B3 (gender), + 13,

There was significant variation in the linear growth trajectories, as in-
dicated by 7, in Model 1 (See Table 4.1) The mean linear growth rate in
reading achievement from kindergarten through third grade, as estimated
by B,,, was positive and statistically significant. This growth rate implies that
a child whose reading growth is one standard deviation above average can
be expected to improve at a rate of 11.77 + y/5.09 = 11.77+ 2.26 = 14.03
points per term (unconditional linear growth rate + 1 SD in growth rate).

In Model 2, I added the quadratic term, =,,, as noted in Equation 4.9.
The quadratic growth model provided a significantly better fit than the lin-
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TABLE 4.1 Multilevel Growth Curve Modeling of Reading Achievement

Fixed Effects Model 1 Model 2 Model 3 Model 4
Avgerage Achievement

Intercept, By, 49.68™ 51.59™" 51.63™" 53.17""

Gender, B, -3.01""*
Linear Effect

Intercept, B, 11.77* 13.05™ 13.09"* 13.45"

Gender, B, -0.71"
Quadratic Effect

Intercept, B,, -0.40"" -0.39™ -0.44™"

Gender, 3, 0.10""
School Change

Intercept, B,, -3.15"" -3.68""

Gender, B,, 1.05¢
Random Effects Variance Components and Deviance Statistics
Level one error 100.61 64.60 63.66 63.66
Intercept, T, 212.61 321.20™ 321.48™ 319.19
Linear growth, 1, 5.09"" 13.01°" 13.15™* 13.02***
Quadratic growth, T, 0.69""" 0.68"* 0.67
School change, 1, 30.45" 29.77"
Deviance - 539,631.1 529,291.1 528,927.1 528,788.3
Number of parameters 6 10 15 19

*p<.001, "p<.01,"p< .05, p< .07

ear model according to the likelihood ratio test comparing the two models,
x?(4) = 10,340, p < .001; therefore, I retained the quadratic parameter in
subsequent growth models. There was significant random variation in the
quadratic parameter, as indicated by T,, (See Table 4.1). The linear param-
eter in Model 2, B,,, is positive, indicating a positive mean instantaneous
growth rate at fall of first grade. However, the quadratic parameter, B,,, is
negative, indicating that this growth rate is not constant but instead tends
to diminish over time. Specifically, predictions for reading achievement
tend to change by a factor of (—.40)* (term— term,, ,)* evidence of a deceler-
ating growth pattern.

In Model 3, I added the time-varying covariate, school change, as a pre-
dictor of reading achievement. The coefficient, B,,, was statistically signifi-
cant and negative, indicating that, given the instantaneous linear growth
and deceleration effects, a child who changed schools would be expected to
score approximately 3 points lower in reading achievement after the switch.
This effect significantly varied across students, as indicated by T,,.
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Finally, in Model 4 I added the time-invariant covariate, gender, to de-
termine if gender was related to average reading achievement at the fall
of first grade (for a child who did not change schools during terms); to
the instantaneous rate of growth in reading achievement at the fall of first
grade; to the deceleration effect; or to the effect of school change on read-
ing achievement (i.e., B,,, B,,, By, and B,,, respectively; see Equation 4.9).
The results indicate that, relative to females, males (gender= 1) who did not
change schools (schoolchange = 0) had significantly lower reading scores at
the beginning of first grade (p < .001), significantly lower instantaneous
rates of change at the fall of first grade (p < .001), and significantly less de-
celeration in growth from kindergarten through third grade (p <.001). Fi-
nally, these results also showed that the negative effect of changing schools
did not vary significantly between boys and girls, although there is the sug-
gestion that females may experience the negative effect of changing schools
slightly more strongly than males (p < .07).

In summary, the results demonstrate that the instantaneous rate of
change in reading achievement is positive at the fall of first grade (i.e.,
indicating an increasing trend at this time-point), but across the span of
kindergarten to third grade there is a deceleration in reading growth over
time. Those children who changed schools had lower reading achievement
scores on average, although the growth in reading was still statistically sig-
nificant after accounting for school change. Finally, there were different
growth trajectories for females and males and a tendency for the effect of
school change to be moderated by gender, although this effect failed to
reach statistical significance.

In this example, multilevel modeling allowed the estimation of achieve-
ment growth across a time period in which data were not collected at equal
intervals and where data were incomplete for some individuals in the sam-
ple. Furthermore, the multilevel model allowed for variation in growth tra-
jectories when estimating average growth, producing a growth model that
better reflected the individual differences in growth patterns.

Multiphase Multilevel Growth Models

When the growth follows a continuous pattern without abrupt transi-
tions, analysts tend to prefer the previously described multilevel linear and
quadratic growth models or latent growth curve models (described in a
later section). In some situations, however, growth may occur in phases
and people may exhibit fairly distinct growth patterns between phases. The
figures below (4.4a through 4.4c) contain examples of these patterns of





