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Introduction

In this module, we introduce methods for describing
continuous-time survival data.

Recall that, when we discussed probability theory in Psychology
310, we saw that there was a key distinction between discrete
and continuous probability, necessitated by the fact that any
range of values on the number line can be broken up into
infinitely many intervals, and that any of those intervals can, in
turn, be broken into infinitely many sub-intervals.
Consequently, while we can define the probability of the event
X = 1 in discrete probability theory, in general we cannot in
continuous probability. The probability of any numerical value
is infinitesimally small.

It turns out that a similar distinction holds in survival analysis,
so our notion of hazard is different in continuous-time survival
analysis from the simple and very convenient notion of a
conditional probability that worked so nicely for us in the
discrete-time framework.
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Introduction

We begin our discussion by emphasizing the similarities
between the new, continuous time framework, and the
discrete-time framework we’ve worked in so far.

Then we shall examine the key mathematical differences, the
difficulties created by these differences, and the mathematical
approaches used to circumvent these difficulties.
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Introduction

In a sense, all time recording is discrete. The question is a
matter of degree. If the recording is sufficiently fine-grained, we
tend to think of it as continuous, even though, in a formal
sense, it really isn’t.

No matter how fine-grained our recording of time is, we can
always “discretize” the data by breaking the time continuum
into intervals.

Moreover, as we’ve already seen, discrete-time survival analysis
methods offer definitions of hazard and survival functions that
are intuitively straightforward and easily related to our previous
studies in regression and probability theory.

Therefore, the question naturally arises: “Why not simply use
discrete-time methods with fine-grained data.”
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Introduction

The answer is that continuous (or nearly continuous) data
contain a richer store of information than discrete data, and
“discretizing” the data throws some of that information away.
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Salient Features

Since time is infinitely divisible, the distribution of event times
displays two key properties:

1 The probability of observing any exact event time is
infinitesimally small

2 The probability that two individuals will have a truly
identical event time is also infinitesimally small
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An Illustrative Data Set

To illustrate some of the key differences between discrete and
continuous survival data, S&W present data from a study by
Diekmann, Jungbauer-Gans, Krassnig, & Lorenz (1996). In this
study, motorists were blocked at a busy intersection in Munich,
Germany, and the time until they honked their horn was
measured to the nearest .01 second.
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The Hazard Function

Let T stand for the time the event of interest occurs.

In the general continuous case the hazard function, h(tj ), is
defined as

h(tj ) = lim
∆t→0

Pr (t ≤ T < t + ∆t | T ≥ t)
∆t

(1)

To decipher this expression, look inside the limit. The
numerator is the conditional probability that the event occurs
in the interval between T = t and T = t + ∆t , given that it did
not occur earlier. By dividing this probability by ∆t , we
transform it to a rate. By taking the limit as the width of the
interval (i.e., ∆t) becomes infinitesimally small, we are
calculating the instantaneous rate at which the event occurs at
a given time. The hazard function in the continuous case is
never negative, and, unlike the discrete case, is not bounded
above by 1. It can vary from 0 to infinity.
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The Survival Function

The survival function (or “survivor” function, as some authors
refer to it) S (tj ) is defined as that an individual will survive
beyond time tj . Formally, if T is the survival time,

S (tj ) = Pr(T > tj ) (2)

Note the essential equivalence of this definition with its
discrete-time counterpart.
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Introduction

Estimation of the hazard and survival functions in
continuous-time survival analysis begins with a life table similar
to the one we employed in discrete-time survival analysis.

This table is based on the simple notion of constructing
intervals, and collecting events (and censored observations) that
occur in those intervals.

For example, Table 13.2 on page 477 of S&W breaks the 18
second interval during which the events occurred into 9 intervals
(the first of which had no events). The first 8 intervals are 1
second long, and the last interval is 10 seconds long.
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Constructing a Grouped Life Table

Once the intervals have been determined, events are tabulated,
and an event conditional probability (corresponding to what we
called the hazard probability in the discrete-time case) is
tabulated. This is defined as

p̂(tj ) =
n eventsj
n at riskj

(3)

The code on the next slide computes these probabilities for the
selected intervals and displays the first 5 columns of Table 13.2
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Constructing a Grouped Life Table

> honk<-read.table("honking.csv", sep=",", header=T)
> interval<- rep(dim(honk)[1], 0)
> for (i in 1:dim(honk)[1]){
+ interval[i] = min(floor(honk$SECONDS[i]), 8)}
> int.event <- rep(0, 8)
> int.censor <- rep(0, 8)
> for (i in 1:dim(honk)[1]){
+ int <- interval[i]
+ if (honk$CENSOR[i] == 0) int.event[int] <- int.event[int]+1
+ if (honk$CENSOR[i] == 1) int.censor[int] <- int.censor[int] + 1}
> interval <- c(1:8)
> interval.end <- c(2:8, 18)
> interval.w <- interval.end - interval
> int.risk <- c(57, rep(0, 7))
> for (i in 2:8){
+ int.risk[i] <- int.risk[i-1] - (int.event[i-1] + int.censor[i-1])}
> phat = (int.event/int.risk)
> int.table <- cbind(interval, interval.end, int.risk, int.event,
+ int.censor, phat)
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A Grouped Life Table

Here is the table.

> int.table

interval interval.end int.risk int.event int.censor phat
[1,] 1 2 57 5 1 0.08772
[2,] 2 3 51 14 3 0.27451
[3,] 3 4 34 9 2 0.26471
[4,] 4 5 23 6 4 0.26087
[5,] 5 6 13 2 2 0.15385
[6,] 6 7 9 2 2 0.22222
[7,] 7 8 5 1 0 0.20000
[8,] 8 18 4 3 1 0.75000
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The Discrete-Time Survival Function Estimate

The discrete-time method is very straightforward, and
essentially parallels the approach taken with discrete-time data.
The survival function is estimates using a product-limit
approach, i.e., Ŝ (t0) = 1, and, for j = 1, . . . , J , we use the
recursive formula

Ŝ (tj ) = Ŝ (tj−1)× (1− p̂(tj )) (4)
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The Discrete-Time Hazard Function Estimate

The estimated hazard function values using the simple
discrete-time approach are obtained by converting the
conditional probability estimates to rates by dividing by the
interval width, i.e.,

ĥ(tj ) =
p̂(tj )
widthj

(5)
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Calculating the Estimates

The following code computes the discrete-estimates and adds
them to the table.

> discrete.h = (phat/interval.w)
> discrete.s <- c(1-discrete.h[1], rep(0, 7))
> for (i in 2:8){
+ discrete.s[i] <- (1 - phat[i])*discrete.s[i-1]
+ }
> int.table <- cbind(int.table,discrete.h,discrete.s)
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The Table

Here is the augmented table.

> int.table

interval interval.end int.risk int.event int.censor phat discrete.h
[1,] 1 2 57 5 1 0.08772 0.08772
[2,] 2 3 51 14 3 0.27451 0.27451
[3,] 3 4 34 9 2 0.26471 0.26471
[4,] 4 5 23 6 4 0.26087 0.26087
[5,] 5 6 13 2 2 0.15385 0.15385
[6,] 6 7 9 2 2 0.22222 0.22222
[7,] 7 8 5 1 0 0.20000 0.20000
[8,] 8 18 4 3 1 0.75000 0.07500

discrete.s
[1,] 0.91228
[2,] 0.66185
[3,] 0.48665
[4,] 0.35970
[5,] 0.30436
[6,] 0.23673
[7,] 0.18938
[8,] 0.04735
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The Actuarial Method for the Survivor Function

The Actuarial Method works very similarly to the discrete-time
method, except that the actuarial method “corrects for
continuity” by assuming that events and censoring are equally
likely to occur anywhere in the interval in which they occurred.
The number at risk is redefined in terms of what it means to be
“at risk for surviving.” Once an individual is censored, that
individual is no longer at risk to survive. Consequently, the
mean number at risk for an interval can be estimated for the
survivor function as

n ′ at riskj = n at riskj −
n censoredj

2
(6)

The actuarial estimates of the survivor function are obtained
using the same formula as the discrete-time method, except
substituting n ′ at riskj for n at riskj . That is, Ŝ (t0) = 1, and,
for j = 1, . . . , J ,

Ŝ (tj ) = Ŝ (tj−1)× (1− p̂(tj ))

= Ŝ (tj−1)× (1− n eventsj
n ′ at riskj

= Ŝ (tj−1)× (1− n eventsj
n at riskj − n censoredj /2

(7)
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The Actuarial Method for the Hazard Function

When redefining the number “at risk” in an interval with
respect to the hazard function, we need to correct, not just for
censoring, but for event occurrence itself, since once an event
occurs, the risk set for future occurrences is reduced. So, in
computing the estimated hazard function via the actuarial
method, we use the redefined risk set formula

n ′′ at riskj = n at riskj −
n censoredj

2
− n eventsj

2
(8)

The estimated hazard function is now

ĥ ′′(tj ) =
p̂′′(tj )
widthj

=
n eventsj /n ′′ at riskj

widthj
(9)
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The Actuarial Method

Here is some R code to compute the actuarial estimates and
add them to the previous table:

> actuarial.s <- c((1-5/(57-1/2)), rep(0,7))
> for (i in 2:8){
+ actuarial.h = (int.event/(int.risk - (int.censor/2) -
+ (int.event/2)))/interval.w
+ actuarial.s[i] <- actuarial.s[i-1]*(1-int.event[i]/(int.risk[i] -
+ int.censor[i]/2))
+ }
> int.table <- cbind(int.table,actuarial.h,actuarial.s)
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The Actuarial Method

Here is the updated table:

> int.table

interval interval.end int.risk int.event int.censor phat discrete.h
[1,] 1 2 57 5 1 0.08772 0.08772
[2,] 2 3 51 14 3 0.27451 0.27451
[3,] 3 4 34 9 2 0.26471 0.26471
[4,] 4 5 23 6 4 0.26087 0.26087
[5,] 5 6 13 2 2 0.15385 0.15385
[6,] 6 7 9 2 2 0.22222 0.22222
[7,] 7 8 5 1 0 0.20000 0.20000
[8,] 8 18 4 3 1 0.75000 0.07500

discrete.s actuarial.h actuarial.s
[1,] 0.91228 0.0926 0.91150
[2,] 0.66185 0.3294 0.65371
[3,] 0.48665 0.3158 0.47542
[4,] 0.35970 0.3333 0.33959
[5,] 0.30436 0.1818 0.28299
[6,] 0.23673 0.2857 0.21224
[7,] 0.18938 0.2222 0.16979
[8,] 0.04735 0.1500 0.02426
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Graphical Comparison of the Two Methods

Here is come code for creating graphs of the survivor and
hazard functions created by the two methods. Note that the
hazard functions are step functions, and are plotted that way.

> attach(data.frame(int.table))

> par(mfrow=c(2,2))
> plot(c(0, interval.end), c(1,discrete.s), type = "l",
+ xlim = c(0, 20), ylim = c(0,1),ylab = "Discrete Survival",
+ xlab = "Seconds after light turns green")
> s.hat.steps <- stepfun(interval, c(1, actuarial.s))
> plot(s.hat.steps, do.points = FALSE, xlim = c(0, 20),
+ ylab = "Actuarial Survival",
+ xlab = "Seconds after light turns green", main = "")
> plot(interval.end, discrete.h, type = "l",
+ xlim = c(0, 20), ylim = c(0, .35),ylab = "Discrete Hazard",
+ xlab = "Seconds after light turns green")
> h.hat.steps <- stepfun(interval, c(NA, actuarial.h))
> plot(h.hat.steps, do.points = FALSE, xlim = c(0, 20),
+ ylim = c(0, .35), ylab = "Actuarial Hazard",
+ xlab = "Seconds after light turns green", main = "")
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Graphical Comparison of the Two Methods
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Introduction

A fundamental problem with methods based on dividing the
time line into discrete intervals is that information is discarded.

The Kaplan-Meier method circumvents the “discretization” of
the data by a clever employment of the product-limit formula.
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Single-Unit Intervals

The Kaplan-Meier method, in practice, works very much like
the discrete-time methods we’ve been using so far. However,
there is a fundamental difference—instead of rounding times,
each event constitutes its own interval. Consequently, each
“interval” contains just one event time (unless there are ties,
which should virtually never occur). Each interval on the time
line begins at one observed event time, and ends just before the
next. The first interval is arbitrarily defined to begin at time 0
and end just before the first event (and, of course, contains no
events).

Once the Kaplan-Meier intervals are constructed, the hazard
and survivor functions are constructed via the discrete-time
method
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Kaplan-Meier Computations

Table 13.3 in S&W gives Kaplan-Meier computations for the
honking data. This table has some minor errors (numbering of
intervals is off), and, unfortunately, the code on the UCLA
website (at least for now) does not work with more recent
versions of R, with the updated survival package. Even when
it did work, it did not include or properly label the start time
and end time columns, nor did it number the intervals starting
from zero. Here is some code for performing the calculations.
This code works with R 2.10.1.
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Kaplan-Meier Computations

> library(survival)
> ## Note, UCLA code will not work with latest versions of R, which need "~1"
> t13.3 <-summary( survfit(Surv(honk$SECONDS, abs(honk$CENSOR - 1))~1))
> ## survfit has done much of the work for us
> ## We extract the appropriate columns
> ## Note, we had to reverse the CENSOR variable!
> s.hat <- t13.3[1][[1]]
> time <- t13.3[2][[1]]
> n.atrisk <- t13.3[3][[1]]
> n.events <- t13.3[4][[1]]
> ## Next line has changed from UCLA code
> se.s.hat <- t13.3$std.err
> n.censored <- width <- p.hat <- rep(0, length(t13.3[[1]]))
> for (i in 1:(length(t13.3[[1]]))){
+ p.hat[i] <- n.events[i] / n.atrisk[i]
+ if (i < (length(t13.3[[1]]))){
+ n.censored[i] <- (n.atrisk[i]-n.atrisk[i+1]) - n.events[i]
+ width[i] <- time[i+1] - time[i]}
+ if (i == (length(t13.3[[1]]))){
+ n.censored[i] <- (n.atrisk[i]- n.events[i])
+ width[i] <- NA}}
> h.hat <- p.hat/width
> ## Note, here I patch the UCLA code to add the missing rows and columns
> t.start <- time
> J <- length(t.start)
> t.end <- 0
> for(i in 1:J-1) t.end[i] <- t.start[i+1]
> t.end[J]=Inf
> tab13.3 <- cbind(t.start,t.end,n.atrisk,n.events,n.censored,p.hat,s.hat,se.s.hat,width,h.hat)
> row.0 <- matrix(c(0,t.start[1],n.atrisk[1],0,0,NA,1,NA,NA,NA),1,10)
> tab13.3 <- rbind(row.0,tab13.3)
> row.names(tab13.3) <- 0:J

James H. Steiger Describing Continuous-Time Event Occurrence Data



Introduction
A Basic Framework for Continuous-Time Event Data

Grouped Methods for Estimation
The Kaplan-Meier Method

The Cumulative Hazard Function
Kernel-Smoothed Estimates of the Hazard Function

Putting it All Together

Kaplan-Meier Computations

Here is the table:

> options(digits=3,width=100)
> tab13.3

t.start t.end n.atrisk n.events n.censored p.hat s.hat se.s.hat width h.hat
0 0.00 1.41 57 0 0 NA 1.0000 NA NA NA
1 1.41 1.51 57 1 1 0.0175 0.9825 0.0174 0.10 0.1754
2 1.51 1.67 55 1 0 0.0182 0.9646 0.0246 0.16 0.1136
3 1.67 1.68 54 1 0 0.0185 0.9467 0.0299 0.01 1.8519
4 1.68 1.86 53 1 0 0.0189 0.9289 0.0343 0.18 0.1048
5 1.86 2.12 52 1 0 0.0192 0.9110 0.0380 0.26 0.0740
6 2.12 2.19 51 1 0 0.0196 0.8931 0.0412 0.07 0.2801
7 2.19 2.48 50 1 1 0.0200 0.8753 0.0441 0.29 0.0690
8 2.48 2.50 48 1 0 0.0208 0.8570 0.0468 0.02 1.0417
9 2.50 2.53 47 1 0 0.0213 0.8388 0.0492 0.03 0.7092
10 2.53 2.54 46 1 0 0.0217 0.8206 0.0514 0.01 2.1739
11 2.54 2.56 45 1 0 0.0222 0.8023 0.0534 0.02 1.1111
12 2.56 2.62 44 1 0 0.0227 0.7841 0.0552 0.06 0.3788
13 2.62 2.68 43 1 0 0.0233 0.7659 0.0569 0.06 0.3876
14 2.68 2.83 42 1 2 0.0238 0.7476 0.0584 0.15 0.1587
15 2.83 2.88 39 1 0 0.0256 0.7285 0.0599 0.05 0.5128
16 2.88 2.89 38 1 0 0.0263 0.7093 0.0614 0.01 2.6316
17 2.89 2.92 37 1 0 0.0270 0.6901 0.0626 0.03 0.9009
18 2.92 2.98 36 1 0 0.0278 0.6710 0.0637 0.06 0.4630
19 2.98 3.14 35 1 1 0.0286 0.6518 0.0647 0.16 0.1786
20 3.14 3.17 33 1 0 0.0303 0.6320 0.0657 0.03 1.0101
21 3.17 3.21 32 1 0 0.0312 0.6123 0.0666 0.04 0.7812
22 3.21 3.22 31 1 0 0.0323 0.5925 0.0673 0.01 3.2258
23 3.22 3.24 30 1 0 0.0333 0.5728 0.0679 0.02 1.6667
24 3.24 3.56 29 1 1 0.0345 0.5530 0.0684 0.32 0.1078
25 3.56 3.57 27 1 0 0.0370 0.5325 0.0688 0.01 3.7037
26 3.57 3.58 26 1 0 0.0385 0.5121 0.0692 0.01 3.8462
27 3.58 3.78 25 1 0 0.0400 0.4916 0.0694 0.20 0.2000
28 3.78 4.10 24 1 1 0.0417 0.4711 0.0694 0.32 0.1302
29 4.10 4.18 22 1 0 0.0455 0.4497 0.0695 0.08 0.5682
30 4.18 4.44 21 1 1 0.0476 0.4283 0.0694 0.26 0.1832
31 4.44 4.51 19 1 0 0.0526 0.4057 0.0693 0.07 0.7519
32 4.51 4.52 18 1 0 0.0556 0.3832 0.0690 0.01 5.5556
33 4.52 4.96 17 1 2 0.0588 0.3606 0.0686 0.44 0.1337
34 4.96 5.39 14 1 1 0.0714 0.3349 0.0683 0.43 0.1661
35 5.39 5.73 12 1 0 0.0833 0.3070 0.0681 0.34 0.2451
36 5.73 6.03 11 1 1 0.0909 0.2791 0.0674 0.30 0.3030
37 6.03 6.30 9 1 1 0.1111 0.2481 0.0666 0.27 0.4115
38 6.30 7.20 7 1 1 0.1429 0.2126 0.0659 0.90 0.1587
39 7.20 9.59 5 1 0 0.2000 0.1701 0.0650 2.39 0.0837
40 9.59 12.29 4 1 0 0.2500 0.1276 0.0611 2.70 0.0926
41 12.29 13.18 3 1 0 0.3333 0.0851 0.0535 0.89 0.3745
42 13.18 Inf 2 1 1 0.5000 0.0425 0.0403 NA NA
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Graphing Kaplan-Meier Estimates

Here is some code for graphing the Kaplan-Meier survivor
function estimates, and comparing them with their actuarial
and discrete-time counterparts. I left out the first panel in
Figure 13.2 in the book, since its information is repeated in the
second panel.

> par(mfrow=c(1,1))
> s.hat.steps <- stepfun(time, c(1, s.hat))
> plot(s.hat.steps, do.points = FALSE, xlim = c(0, 20),
+ ylim = c(0,1), ylab = "Estimated Survival",
+ xlab = "Seconds after light turns green",
+ main = "",col="red")
> ##Then we overlay the actuarial and discrete-time survival
> ##estimates using the imposed intervals from Table 13.2.
> points(c(1, interval.end), c(1, discrete.s),
+ type = "l", lty = 2)
> s.hat.actuarial <- stepfun(c(interval, 18),
+ c(1, actuarial.s, 0.02425622))
> lines(s.hat.actuarial , do.points = FALSE, lty = 3)
> legend("topright", c("Kaplan-Meier", "Discrete Time",
+ "Actuarial"),lty = c(1, 2, 3),col=c("red","black","black"))
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The Cumulative Hazard Function

The fact that hazard is a probability in discrete-time survival
analysis and an instantaneous rate in continuous-time survival
analysis is a major point of differentiation between the two
methods, and creates challenges in estimation in the continuous
case. For one thing, as the text points out, since each interval
has only one observation, the interval widths used in computing
estimated hazard values vary widely, and so the hazard values
are quite erratic. Consequently, these estimates are seldom
provided by standard packages. To circumvent this difficulty, we
deal with the cumulative hazard function H (tj ), which is the
cumulation of the instantaneous hazards from t0 to tj .
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The Meaning of Cumulative Hazard

Technically, of course H (tj ) =
∫ t1
t0

h(x )dx . So the hazard at tj is
the derivative of H (tj ), that is, the slope of the cumlative
hazard function at tj . This simple fact leads to some obvious
conclusions, which S&W explore graphically in great detail in
section 13.4.1 of their text. You should study that section, with
the associated graphs, and be sure it makes sense to you.
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The Nelson-Aalen Method

The Nelson-Aalen estimator of cumulative hazard at tj sums up
interval-specific estimates of total hazard for all intervals up to
and including j . The total hazard for interval i is
ĥKM (ti)× widthi .
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The Negative Log Survivor-Function Method

The negative log method exploits a well-known relationship
between the cumulative hazard and survivor functions.
Specifically, H (tj ) = − ln S (tj ). The negative log
survivor-function estimates are obtained by applying the above
equation directly to the Kaplan-Meier estimates of the survivor
function.
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Plotting Estimates of the Cumulative Hazard Function

Here is some code for replicating the upper panel of Figure 13.4
in the S&W text. This panel shows the negative log survivor
and Nelson-Aalen estimates of the cumulative hazard function
on the same graph.

> nl.s <- -log(s.hat)
> nls.steps <- stepfun(time, c(0, nl.s))
> NA.est <- c(0, rep(0, length(s.hat)))
> for (i in 2:length(NA.est)){
+ NA.est[i] <- NA.est[i-1]+p.hat[i-1]}
> NA.steps <- stepfun(time, NA.est)
> par(mfrow=c(1,1))
> plot(nls.steps, do.points = FALSE, xlim = c(0, 20), ylim = c(0,3.5),
+ ylab = "Cumulative Hazard", xlab = "Seconds after light turns green",
+ main = "",col="red")
> lines(NA.steps, do.points = FALSE, lty =2, xlim = c(0,20))
> legend("bottomright", c("Negative Log Survival", "Nelson-Aalen"),
+ lty = c(1, 2),col=c("red","black"))
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Estimating the Hazard Function

So far, we’ve talked about estimation of the cumulative hazard
function. Estimation of the hazard function itself is somewhat
more challenging.

Since hazard is the slope of the cumulative hazard function, one
way to obtain crude estimates of the hazard at any point is to
take the difference between cumulative hazard values and use
them to estimate the slope of the cumulative hazard function at
that time.

These estimates will be crude and quite variable, so we might
smooth them by taking an average of their values over a window
ranging around the time of interest. The larger the window, the
smoother the resulting estimated graph will tend to be.

Choice of an interval width, much like the choice of a bin width
in histogram construction, is an art as well as a science. You
should experiment with several widths.
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Kernel Smoothed Estimate

Here is some R code for generating and graphing
kernel-smoothed estimates.

> smooth<- function(width, time, survive){
+ n=length(time)
+ lo=time[1] + width
+ hi=time[n] - width
+ npt=50
+ inc=(hi-lo)/npt
+ s=lo+t(c(1:npt))*inc
+ slag = c(1, survive[1:n-1])
+ h=1-survive/slag
+ x1 = as.vector(rep(1, npt))%*%(t(time))
+ x2 = t(s)%*%as.vector(rep(1,n))
+ x = (x1 - x2) / width
+ k=.75*(1-x*x)*(abs(x)<=1)
+ lambda=(k%*%h)/width
+ smoothed= list(x = s, y = lambda)
+ return(smoothed)
+ }
> par(mfrow=c(3,1))
> bw1 <- smooth(1, time, s.hat)
> plot(bw1$x, bw1$y, type = "l", xlim = c(0, 20), ylim = c(0, .4),
+ xlab = "Seconds after light turns green", ylab = "Smoothed hazard")
> bw2 <- smooth(2, time, s.hat)
> plot(bw2$x, bw2$y, type = "l", xlim = c(0, 20), ylim = c(0, .4),
+ xlab = "Seconds after light turns green", ylab = "Smoothed hazard")
> bw3 <- smooth(3, time, s.hat)
> plot(bw3$x, bw3$y, type = "l", xlim = c(0, 20), ylim = c(0, .4),
+ xlab = "Seconds after light turns green", ylab = "Smoothed hazard")
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Putting it All Together

In the final section of Chapter 13, Singer & Willett present
several examples and urge you to consider them carefully to
develop your intuitions about survivor, cumulative hazard, and
kernel-smoothed hazard functions.
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Time to Retirement among Supreme Court Judges
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Employment Duration among Health Care Workers
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