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Introduction

In this module, we review some key ideas from multivariate
analysis. These include

1 Matrix Multiplication
2 Partitioned Matrix Forms
3 Matrix Expected Value Algebra
4 Covariance Matrices and Linear Combinations
5 Multiple Regression
6 Covariance Pattern Models
7 Component Models
8 Common Factor Models and Exploratory Common Factor

Analysis
9 Confirmatory Factor Analysis
10 Structural Equation Modeling and the LISREL model
11 The Extended LISREL model

I will just touch on a few key ideas here. Extensive additional
material is available in the course handouts and lecture notes for
Psychology 310, Psychology 312, and Psychology 319(MLRM).
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Matrix Multiplication
Conformability

Conformability

Matrix multiplication is an operation with properties quite
different from its scalar counterpart.
order matters in matrix multiplication.
The product AB will exist if and only if the number of
columns of A is equal to the number of rows of B .
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Matrix Multiplication
Importance of Order

Importance of Order

The matrix product AB need not be the same as the
matrix product BA.
Indeed, the matrix product AB might be well-defined,
while the product BA might not exist.
When we compute the product AB , we say that A is
post-multiplied by B , or that B is premultiplied by A
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Matrix Multiplication
Dimension of a Matrix Product

If two or more matrices are conformable, there is a strict rule
for determining the dimension of their product

Matrix Multiplication — Dimensions of a Product

The product pAqBr will be of dimension p × r
More generally, the product of any number of conformable
matrices will have the number of rows in the leftmost
matrix, and the number of columns in the rightmost
matrix.
For example, the product pAqBrC s will be of
dimensionality p × s
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Matrix Multiplication
Three Approaches

Three Approaches

Matrix multiplication might well be described as the key
operation in matrix algebra
What makes matrix multiplication particularly interesting
is that there are numerous lenses through which it may be
viewed
We shall examine 3 ways of “looking at” matrix algebra
All of them rely on matrix partitioning, which we’ll
examine briefly in the next 2 slides
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Matrix Multiplication
The Row by Column Approach

Any p × q matrix A may be partitioned into as a set of p rows
For example, the 2× 3 matrix

(
1 2 3
3 3 3

)
(1)

may be thought of as two rows, (1 2 3) and (3 3 3) stacked
on top of each other

We have a notation for this. We write

A =

(
a ′
1

a ′
2

)
(2)

In future discussions, I will refer to the “dimension of the
partitioned form” which in general will be different from the
dimension of the matrix. For example, the matrix A above is a
2× 3 matrix, but I have expressed it as a 2× 1 partitioned form
by writing it as two rows.
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Matrix Multiplication
The Row by Column Approach

We can also view any p × q matrix as a set of q columns, joined
side-by-side

For example, for the 2× 3 matrix(
1 2 3
3 3 3

)
(3)

we can write
A =

(
a1 a2 a3

)
(4)

where, for example,

a1 =

(
1
3

)
(5)

Multilevel Some Key Multivariate Principles



Introduction
Matrix Multiplication

Partitioned Matrix Forms
Matrix Expected Value Algebra

Selected Multivariate Techniques

The Row by Column Approach
Linear Combination of Columns Approach
Linear Combination of Rows Approach

Matrix Multiplication
The Row by Column Approach

Suppose you wish to multiply the two matrices A and B , where

A =

(
2 7
3 5

)
, B =

(
1 2 1
2 2 3

)
(6)

You know that the product, C = AB , will be a 2× 3 matrix

Partition A into 2 rows, and B into 3 columns. Element ci ,j is
the scalar product of row i of A with column j of B

Multilevel Some Key Multivariate Principles



Introduction
Matrix Multiplication

Partitioned Matrix Forms
Matrix Expected Value Algebra

Selected Multivariate Techniques

The Row by Column Approach
Linear Combination of Columns Approach
Linear Combination of Rows Approach

Matrix Multiplication
The Row by Column Approach

Again suppose you wish to compute the product C = AB
using the matrices from the preceding slide.

Example

Compute c1,1. (
2 7
3 5

)(
1 2 1
2 2 3

)
(7)

Taking the product of the row 1 of A and column 1 of B , we
obtain (2)(1) + (7)(2) = 16
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Matrix Multiplication
The Row by Column Approach

Again suppose you wish to compute the product C = AB
using the matrices from the preceding slide.

Example

Compute c2,3. (
2 7
3 5

)(
1 2 1
2 2 3

)
(7)

Taking the product of the row 2 of A and column 3 of B , we
obtain (3)(1) + (5)(3) = 18
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Matrix Multiplication
Linear Combination of Columns Approach

Linear Combination of Columns

When you post-multiply a matrix A by a matrix B , each
column of B generates, in effect, a column of the product
AB
Each column of B contains a set of linear weights
These linear weights are applied to the columns of A to
produce a single column of numbers.
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Matrix Multiplication
Linear Combination of Columns Approach

Consider the product(
2 7
3 5

)(
1 2 1
2 2 3

)
(8)

The first column of the product is produced by applying the
linear weights 1 and 2 to the columns of the first matrix

The result is

1

(
2
3

)
+ 2

(
7
5

)
=

(
16
13

)
(9)
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Matrix Multiplication
Linear Combination of Columns Approach

Consider once again the product(
2 7
3 5

)(
1 2 1
2 2 3

)
(10)

The second column of the product is produced by applying the
linear weights 2 and 2 to the columns of the first matrix

The result is

2

(
2
3

)
+ 2

(
7
5

)
=

(
18
16

)
(11)
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Matrix Multiplication
Linear Combination of Rows Approach

Linear Combination of Rows

When you pre-multiply a matrix B by a matrix A, each
row of A generates, in effect, a rowof the product AB
Each row of A contains a set of linear weights
These linear weights are applied to the rows of B to
produce a single row vector of numbers.
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Matrix Multiplication
Linear Combination of Rows Approach

Consider the product(
2 7
3 5

) (
1 2 1
2 2 3

)
(12)

The first row of the product is produced by applying the linear
weights 2 and 7 to the rows of the second matrix The result is

2
(

1 2 1
)

+ 7
(

2 2 3
)

=
(

16 18 23
)

(13)
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Matrix Multiplication
Mathematical Properties

The following are some key properties of matrix multiplication:

Mathematical Properties of Matrix Multiplication

Associativity.
(AB)C = A(BC ) (14)

Not generally commutative. That is, often AB 6= BA.
Distributive over addition and subtraction.

C (A + B) = CA + CB (15)

Assuming it is conformable, the identity matrix I functions
like the number 1, that is pAqI q = A, and pI pAq = A.
AB = 0 does not necessarily imply that either A = 0 or
B = 0.
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Partitioned Matrix Forms

A matrix may be composed of submatrices, as we have already
seen in our discussion of matrix multiplication.

Being able to transpose and multiply a partitioned matrix is a
skill that is important for understanding the key equations of
advanced multivariate techniques.
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Partitioned Matrix Forms

Assuming that the matrices are partitioned properly, the rules
are quite simple:

1 To transpose a partitioned matrix, treat the sub-matrices
in the partition as though they were elements of a matrix,
but transpose each sub-matrix. The transpose of a p × q
partitioned form will be a q × p partitioned form.

2 To multiply partitioned matrices, treat the sub-matrices as
though they were elements of a matrix. The product of
p × q and q × r partitioned forms is a p × r partitioned
form.
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Transposing a Partitioned Matrix

Some examples will illustrate the above definition.

Example (Transposing a Partitioned Matrix)

Suppose A is partitioned as

A =

 C D
E F
G H

 (16)

Then

A′ =

[
C ′ E ′ G ′

D ′ F ′ H ′

]
(17)
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Example (Product of two Partitioned Matrices)

Suppose A =
[
X Y

]
and B =

[
G
H

]
. Then

AB = XG + YH .
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Expected Value of a Random Vector or Matrix

The expected value of a random vector (or matrix) is a vector
(or matrix) whose elements are the expected values of the
individual random variables that are the elements of the
random vector.

Example (Expected Value of a Random Vector)

Suppose, for example, we have two random variables x and y ,
and their expected values are 0 and 2, respectively. If we put
these variables into a vector ξ, it follows that

E (ξ) =

[
0
2

]
(18)
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Matrix Expected Value Algebra

If F and G are matrices of constants and X and Y are random
matrices, then

1 E (X + Y ) = E (X ) + E (Y )
2 E (FX ) = FE (X )
3 E (FXG) = FE (X )G

Essentially these rules mean that the expectation operator
distributes over addition and/or subtraction, and that the
operator and its associated parentheses “pass through” matrices
of constants from the left and the right until encountering the
first random matrix (or vector).
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Expected Value Algebra

Example (Expected Value Algebra)

As an example of expected value algebra, we reduce the
following expression. Suppose the Greek letters are random
vectors with zero expected value, and the matrices contain
constants. Then

E
(
A′B ′ηξ′C

)
= A′B ′E

(
ηξ′
)
C

= A′B ′ΣηξC
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Variance-Covariance Matrix of a Random Vector

Given a random vector ξ with expected value µ, the
variance-covariance matrix Σξξ is defined as

Σξξ = E (ξ − µ)(ξ − µ)′ (19)

= E (ξξ′)− µµ′ (20)

If ξ is a deviation score random vector, then

Σξξ = E (ξξ′) (21)
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Variance-Covariance Matrix of a Random Vector

Comment. Equation 21 frequently is confusing to beginners.
Let’s “concretize” it a bit by giving an example with just two
variables. Suppose

ξ =

[
x1
x2

]
(22)

and

µ =

[
µ1
µ2

]
(23)

Note that ξ contains random variables, while µ contains
constants. Computing E (ξξ′), we find

E
(
ξξ′
)

= E

([
x1
x2

] [
x1 x2

])
= E

([
x 2
1 x1x2

x2x1 x 2
2

])
=

[
E (x 2

1 ) E (x1x2)
E (x2x1) E (x 2

2 )

]
(24)
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In a similar vein, we find that

µµ′ =

[
µ1
µ2

] [
µ1 µ2

]
=

[
µ21 µ1µ2
µ2µ1 µ22

]
(25)

Subtracting Equation 25 from Equation 24, and recalling our
basic definitions for covariances and variances, we find

E (ξξ′)− µµ′ =

[
E (x 2

1 )− µ21 E (x1x2)− µ1µ2
E (x2x1)− µ2µ1 E (x 2

2 )− µ22

]
=

[
σ21 σ12
σ21 σ22

]
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Covariance Matrix for Two Random Vectors

Given two random vectors ξ and η, their covariance matrix Σξη

is defined as

Σξη = E
(
ξη′)− E (ξ)E (η′) (26)

= E
(
ξη′)− E (ξ)E (η)′ (27)
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Key Linear Combination Results

As a generalization of results we presented in scalar algebra, we
find that, for a matrix of constants B , and a random vector x ,

E
(
B ′x

)
= B ′E (x ) = B ′µ

For random vectors x and y , we find

E (x + y) = E (x ) + E (y) (28)

Comment. The result obviously generalizes to the expected
value of the difference of random vectors.
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Key Linear Combination Results

Given x , a random vector with p variables, having
variance-covariance matrix Σxx . The variance-covariance
matrix of any set of linear combinations y = B ′x may be
computed as

Σyy = B ′ΣxxB (29)

In a similar manner, we may prove the following:

Given x and y , two random vectors with p and q variables
having covariance matrix Σxy . The covariance matrix of any
two sets of linear combinations w = B ′x and m = C ′y may be
computed as

Σwm = B ′ΣxyC (30)
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Multiple Regression

y = Xβ + ε (31)

with X assumed fixed, and ε ∼ N (0, σ2I ) .
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Random Multiple Regression

In this case the model is

y = B ′x + ε (32)

with x and y having a multivariate normal distribution, and
E (xε′) = 0.

In this case, B ′ = ΣyxΣ−1
xx
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Covariance Pattern Models

y i = X iβ + εi (33)

with X i assumed fixed, and εi ∼ N (0,Σi)

This is essentially the regression model with the errors allowed
to correlate.
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Component Models

y = Fx + ε (34)

with
x = B ′y (35)

and E (xε′) = 0
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