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Introduction

In this lecture, we introduce the general multilevel model for
repeated measurements, and illustrate it with a simple example.
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The General Polynomial Growth Model – Level 1

Raudenbush and Bryk (2002, Chapter 6) describe a general
polynomial model for analyzing growth data. An individual i ’s
score at time t is a polynomial (of order P) function of ati , the
age at time t . We will modify the Raudenbush-Bryk notation
slightly to agree more closely with the notation in Singer and
Willett. Here is the level-1 model.

Yti = π0i + π1iati + π2ia
2
ti + . . .+ πPia

P
ti + εti (1)

Each person is observed on Ti occasions. (Note that the
number and spacing of measurements may vary across persons.)
The multivariate distribution of the εti may be modeled in
various ways, to allow for correlation between the measurements
across time.
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The General Polynomial Growth Model – Level 2

The growth parameters in Equation 1 are free to vary across
individuals. The P+1 parameters are modeled at level 2 as

πpi = γp0 +

Qp∑
q=1

γpqXqi + ζpi (2)

where Xqi is either a measured characteristic of the individual
or a treatment, and ζpi is a random effect with mean 0. The set
of P + 1 random effects is assumed to have a multivariate
normal distribution with covariance matrix T .
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A Linear Growth Model

When the number of observations per individual is small, we
find it both convenient and necessary to employ a linear model.
In that case, the level-1 equation 1 simplifies to

Yti = π0i + π1iati + εti (3)

and the level-2 equation 2 simplifies to

π0i = γ00 +

Q0∑
q=1

γ0qXqi + ζ0i

π1i = γ10 +

Q1∑
q=1

γ1qXqi + ζ1i (4)

Multilevel The Multilevel Change Model



Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Introduction
Preliminary Analysis

An Example — Alcohol Use among Teenagers

Curran, Stice, and Chassin (1997, Journal of Consulting and
Clinical Psychology, p. 130) studied longitudinal progression of
alcohol use in 82 adolescents. . .

Three waves of data were gathered, which included a
4-item questionnaire measuring extent of alcohol use
There were two level-2 predictors, COA (child of an
alcoholic) and PEER (a measure of peer group alcohol use)
As described in the text, a square root transformation was
applied to the data to generate the PEER and ALCUSE
data to enhance linearity.
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Introduction
Preliminary Analysis

Preliminary Analysis

We would like to get a preliminary feel for the data with some
exploratory analyses. We begin by loading the data.

> alcohol1 <- read.table("alcohol1_pp.txt", header=T, sep=",")

> attach(alcohol1)

The data are in person-period format, as we can see by looking
at the first few lines:

> alcohol1[1:9,]

id age coa male age_14 alcuse peer cpeer ccoa

1 1 14 1 0 0 1.732 1.2649 0.2469 0.549

2 1 15 1 0 1 2.000 1.2649 0.2469 0.549

3 1 16 1 0 2 2.000 1.2649 0.2469 0.549

4 2 14 1 1 0 0.000 0.8944 -0.1236 0.549

5 2 15 1 1 1 0.000 0.8944 -0.1236 0.549

6 2 16 1 1 2 1.000 0.8944 -0.1236 0.549

7 3 14 1 1 0 1.000 0.8944 -0.1236 0.549

8 3 15 1 1 1 2.000 0.8944 -0.1236 0.549

9 3 16 1 1 2 3.317 0.8944 -0.1236 0.549

Multilevel The Multilevel Change Model



Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Introduction
Preliminary Analysis

Preliminary Analysis

A good place to start is by examining individual growth curves
for a random subset of 8 of the participants in the study.

> library(lattice)

> xyplot(alcuse~age | id,

+ data=alcohol1[alcohol1$id %in%

+ c(4, 14, 23, 32, 41, 56, 65, 82), ],

+ panel=function(x,y){

+ panel.xyplot(x, y)

+ panel.lmline(x,y)

+ }, ylim=c(-1, 4), as.table=T)

> update(trellis.last.object(),

+ strip = strip.custom(strip.names = TRUE,

+ strip.levels = TRUE))
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Trellis Plot
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Introduction
Preliminary Analysis

Potential Predictors

> #set up a 2x2 panel

> par(mfrow=c(2,2))

> alcohol.coa0 <- alcohol1[alcohol1$coa==0, ]

> #fitting the linear model by id

> f.coa0 <- by(alcohol.coa0, alcohol.coa0$id,

+ function(data) fitted(lm(alcuse~age, data=data)))

> #transforming f.coa from a list to a vector and

> #stripping of the names of the elements in the vector

> f.coa0 <- unlist(f.coa0)

> names(f.coa0) <- NULL

> #plotting the linear fit by id

> interaction.plot(alcohol.coa0$age, alcohol.coa0$id, f.coa0,

+ xlab="AGE", ylab="ALCUSE", ylim=c(-1, 4), lwd=1)

> title("COA=0")

> alcohol.coa1 <- alcohol1[alcohol1$coa==1, ]

> #fitting the linear model by id

> f.coa1 <- by(alcohol.coa1, alcohol.coa1$id,

+ function(data) fitted(lm(alcuse~age, data=data)))

> #transforming f.coa1 from a list to a vector and

> #stripping of the names of the elements in the vector

> f.coa1 <- unlist(f.coa1)

> names(f.coa1) <- NULL

> #plotting the linear fit by id

> interaction.plot(alcohol.coa1$age, alcohol.coa1$id, f.coa1,

+ xlab="AGE", ylab="ALCUSE", ylim=c(-1, 4), lwd=1)

> title("COA=1")

> cutoff<-mean(alcohol1$peer)

> alcohol.lowpeer <- alcohol1[alcohol1$peer<=cutoff, ]

> #fitting the linear model by id

> f.lowpeer <- by(alcohol.lowpeer, alcohol.lowpeer$id,

+ function(data) fitted(lm(alcuse~age, data=data)))

> #transforming f.lowpeer from a list to a vector and

> #stripping of the names of the elements in the vector

> f.lowpeer <- unlist(f.lowpeer)

> names(f.lowpeer) <- NULL

> #plotting the linear fit by id

> interaction.plot(alcohol.lowpeer$age, alcohol.lowpeer$id, f.lowpeer,

+ xlab="AGE", ylab="ALCUSE", ylim=c(-1, 4), lwd=1)

> title("Low Peer")

> #######Lower right panel, peer>1.01756.

> alcohol.hipeer <- alcohol1[alcohol1$peer>cutoff, ]

> #fitting the linear model by id

> f.hipeer <- by(alcohol.hipeer, alcohol.hipeer$id,

+ function(data) fitted(lm(alcuse~age, data=data)))

> #transforming f.hipeer from a list to a vector and

> #stripping of the names of the elements in the vector

> f.hipeer <- unlist(f.hipeer)

> names(f.hipeer) <- NULL

> #plotting the linear fit by id

> interaction.plot(alcohol.hipeer$age, alcohol.hipeer$id, f.hipeer,

+ xlab="AGE", ylab="ALCUSE", ylim=c(-1, 4), lwd=1)

> title("High Peer")

null device

1
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Introduction
Preliminary Analysis

Evaluation of Potential Predictors

In the top part of the panel, we see that children of
alcoholics have generally higher intercepts than children of
nonalcoholics
In the bottom part of the panel, we see a tendency for
adolescents in the higher peer group have higher intercepts
but somewhat lower slopes
These trends suggest that both COA and PEER may be
important predictors of an individual’s developmental
trajectory
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Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Introduction

In this section, we present the R code for generating the models
discussed in Singer and Willett, Chapter 4.

The models are presented algebraically in their Table 4.2.

The output from an analysis with MLwiN (full IGLS) is
presented in their Table 4.1.

We shall present the R code and output corresponding to each
model.
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Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Model A – The Unconditional Means Model

This model, corresponding to one-way random effects ANOVA,
states in effect that all individual trajectories are flat, but that
intercepts vary in a normal distribution around a population
mean γ00. Be sure to load the lme4 library.

> library(lme4)
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Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Fitting Model A

> model.a <- lmer(alcuse~ 1 + (1|id),REML=FALSE)

> summary(model.a)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ 1 + (1 | id)

AIC BIC logLik deviance REMLdev

676 687 -335 670 673

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 0.564 0.751

Residual 0.562 0.749

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.9220 0.0957 9.63
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Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

The Intraclass Correlation Revisited

The intraclass correlation is computed on page 96 of Willett
and Singer (2003). This is

ρ =
σ20

σ20 + σ2ε
(5)

which we estimate in this case from our R output as
.57313/(.57313+.56175) = .505.
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Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

The Intraclass Correlation Revisited

The authors make the point that the composite model
demonstrates, i.e., that the “residuals” in the composite model
are the sum of two terms, one of which remains constant across
time. So the intraclass correlation also represents the
autocorrelation between measurements at two times the ith
individual. For example, consider the outcome scores for
individual i at times 1 and 2. These are, from the composite
model,

Yi1 = γ00 + ζ0i + εi1

Yi2 = γ00 + ζ0i + εi2 (6)

(C.P.) Using the heuristic rules for linear combinations, prove
that the correlation between Yi1 and Yi2 is the intraclass
correlation ρ.
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Model A
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Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Model B — The Unconditional Growth Model

This model allows a non-flat trajectory by including TIME as
the predictor in the level-1 model.

It also allows the slopes and intercepts to correlate across
individuals.

The data file contains a variable called age14 that represents
time from the beginning of the study, which is a reasonable
metric to use in this case. However, I prefer the name TIME
and have effectively renamed the variable in the code below.
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Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Fitting Model B

> time <- age_14

> model.b <- lmer(alcuse ~ time +(time | id),REML=FALSE)

> summary(model.b)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ time + (time | id)

AIC BIC logLik deviance REMLdev

649 670 -318 637 643

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.624 0.790

time 0.151 0.389 -0.223

Residual 0.337 0.581

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.6513 0.1051 6.20

time 0.2707 0.0625 4.33

Correlation of Fixed Effects:

(Intr)

time -0.441
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Model D – COA and PEER as Level-2 Predictors

Interpreting Model B Output

Note that the residual variance dripped sharply from .562 to
.337. Since .337/.562 = .600, Singer and Willett conclude that
the 40% of the within-person variation alcohol use is
systematically associated with linear TIME.

Note also that the correlation between the two random effects is
negative, −.227, and weak.
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Model C – COA as a Level-2 Predictor

In this model, we use COA at level 2 to predict slopes and
intercepts.
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Model A
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Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Fitting Model C

> model.c <- lmer(alcuse ~ coa + time + coa:time + (time | id),REML=FALSE)

> summary(model.c)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ coa + time + coa:time + (time | id)

AIC BIC logLik deviance REMLdev

637 665 -311 621 632

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.488 0.698

time 0.151 0.388 -0.219

Residual 0.337 0.581

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.3160 0.1307 2.42

coa 0.7432 0.1946 3.82

time 0.2930 0.0842 3.48

coa:time -0.0494 0.1254 -0.39

Correlation of Fixed Effects:

(Intr) coa time

coa -0.672

time -0.460 0.309

coa:time 0.309 -0.460 -0.672
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Pseudo-R2 Statistics

On pages 102–104, Singer and Willett discuss three “pseudo-R2”
statistics for quantifying performance of the various models.
The first statistic, R2

y,ŷ is the squared correlation, across all
participants, between predicted scores (using model estimates in
the composite model formula) and actual outcome scores. In
this case, R2

y,ŷ = .043, as computed below.

> cor(alcuse,.6513 +.2707*time)^2

[1] 0.04339
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Pseudo-R2 Statistics

Residual variation—that portion of the outcome variation
unexplained by a model’s level-1 predictors—provides another
criterion for comparing two models. For models A and B, we
have

R2
ε =

σ̂2εA − σ̂2εB
σ̂2εA

(7)

In this case, we get (.562 − .337)/.562 = .400.

Multilevel The Multilevel Change Model



Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Pseudo-R2 Statistics

We can use an approach similar to that taken in the previous
slide to compute pseudo-R2 statistics for the proportional
reduction in level-2 variance attributable to the addition of
level-2 predictors. We have, for example

R2
C =

σ̂2εB − σ̂2εC
σ̂2εB

(8)

One well-known problem with these statistics is that unlike
more familiar R2 indices, they can be negative.

Multilevel The Multilevel Change Model



Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Introduction
Model A
Model B
Model C – COA as a Level-2 Predictor
Model D – COA and PEER as Level-2 Predictors

Model D – COA and PEER as Level-2 Predictors

> model.d <- lmer(alcuse ~ coa + time + coa:time+ peer + peer:time +(time | id),REML=FALSE)

> summary(model.d)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ coa + time + coa:time + peer + peer:time + (time | id)

AIC BIC logLik deviance REMLdev

609 644 -294 589 606

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.241 0.491

time 0.139 0.373 -0.033

Residual 0.337 0.581

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) -0.3165 0.1481 -2.14

coa 0.5792 0.1625 3.56

time 0.4294 0.1137 3.78

peer 0.6943 0.1115 6.23

coa:time -0.0140 0.1248 -0.11

time:peer -0.1498 0.0856 -1.75

Correlation of Fixed Effects:

(Intr) coa time peer coa:tm

coa -0.371

time -0.436 0.162

peer -0.686 -0.162 0.299

coa:time 0.162 -0.436 -0.371 0.071

time:peer 0.299 0.071 -0.686 -0.436 -0.162
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Recentering Predictors to Improve Interpretation

Time-invariant predictors can be centered, either to a group
average or a particularly meaningful or interesting value, in
order to facilitate interpretation. In general, such recentering
will affect intercepts but not slopes. γ̂10 and γ̂11 represent
values of their respective growth parameters when all other
predictors in the associated level-2 model are zero.

This can make interpretation problematic if 0 is an impossible
value.
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Model E

In model E, neither PEER nor COA are centered. The intercepts
therefore represent a child of non-alcoholic parents whose peers
at age 14 are totally abstinent (PEER = 0 and COA = 0).
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Model E

> model.e <- lmer(alcuse ~ coa + peer + time + peer:time +(time | id),REML=FALSE)

> summary(model.e)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ coa + peer + time + peer:time + (time | id)

AIC BIC logLik deviance REMLdev

607 638 -294 589 604

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.241 0.491

time 0.139 0.373 -0.034

Residual 0.337 0.581

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) -0.3138 0.1461 -2.15

coa 0.5712 0.1462 3.91

peer 0.6952 0.1113 6.25

time 0.4247 0.1056 4.02

peer:time -0.1514 0.0845 -1.79

Correlation of Fixed Effects:

(Intr) coa peer time

coa -0.338

peer -0.709 -0.146

time -0.410 0.000 0.351

peer:time 0.334 0.000 -0.431 -0.814
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Model F

In model F, PEER is centered while COA is not. The intercepts
therefore represent a child of non-alcoholic parents whose peers
at age 14 are average consumers (PEER = 1.018 and COA = 0).
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Model F

> model.f <- lmer(alcuse ~ coa + cpeer + time + cpeer:time + (time | id),REML=FALSE)

> summary(model.f)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ coa + cpeer + time + cpeer:time + (time | id)

AIC BIC logLik deviance REMLdev

607 638 -294 589 604

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.241 0.491

time 0.139 0.373 -0.034

Residual 0.337 0.581

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.3939 0.1035 3.80

coa 0.5712 0.1462 3.91

cpeer 0.6952 0.1113 6.25

time 0.2706 0.0613 4.42

cpeer:time -0.1514 0.0845 -1.79

Correlation of Fixed Effects:

(Intr) coa cpeer time

coa -0.637

cpeer 0.094 -0.146

time -0.336 0.000 0.000

cpeer:time 0.000 0.000 -0.431 0.001
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Model F

In model G, PEER and COA are centered. The intercepts
therefore represent an average study participant(PEER = 1.018
and COA = 0.451).
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Model G

> model.g <- lmer(alcuse ~ ccoa+ cpeer + time + cpeer:time + (time | id),REML=FALSE)

> summary(model.g)

Linear mixed model fit by maximum likelihood

Formula: alcuse ~ ccoa + cpeer + time + cpeer:time + (time | id)

AIC BIC logLik deviance REMLdev

607 638 -294 589 604

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.241 0.491

time 0.139 0.373 -0.034

Residual 0.337 0.581

Number of obs: 246, groups: id, 82

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.6515 0.0798 8.17

ccoa 0.5712 0.1462 3.91

cpeer 0.6952 0.1113 6.25

time 0.2706 0.0613 4.42

cpeer:time -0.1514 0.0845 -1.79

Correlation of Fixed Effects:

(Intr) ccoa cpeer time

ccoa 0.000

cpeer 0.001 -0.146

time -0.436 0.000 0.000

cpeer:time 0.000 0.000 -0.431 0.001
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Deviance Statistics for Comparing Nested Models

As explained in the text, with ML estimation −2 × LL is a
chi-square “deviance” or “badness of fit” statistic. If models are
nested, the difference in deviance statistics has a chi-square
distribution with degrees of freedom equal to the difference in
the number of estimated parameters for the two models.

However, if REML estimation is used, then deviance-based
comparisons can only be made for models with identical fixed
effects but varying random effects.
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Comparing Model A to Model B

> options(digits=4)

> anova(model.a,model.b)

Data:

Models:

model.a: alcuse ~ 1 + (1 | id)

model.b: alcuse ~ time + (time | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

model.a 3 676 687 -335

model.b 6 649 670 -318 33.5 3 2.5e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Comparing Model B to Model C

> anova(model.b,model.c)

Data:

Models:

model.b: alcuse ~ time + (time | id)

model.c: alcuse ~ coa + time + coa:time + (time | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

model.b 6 649 670 -318

model.c 8 637 665 -311 15.4 2 0.00045 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wald Statistics for Testing Composite Hypotheses

If a set of parameters is collected in a vector γ, for example,
then composite linear hypotheses can be written in the form

H0 : C ′γ = 0

Example (A Composite Hypothesis)

Suppose we want to test whether γ1 and γ2 are both zero.
Then, in matrix formulation, we have[

1 0
0 1

] [
γ1
γ2

]
=

[
0
0

]
Multilevel The Multilevel Change Model



Introduction
The General Polynomial Growth Model

A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Wald Statistics for Testing Composite Hypotheses

Suppose we estimate γ with the ML estimates γ̂ having
estimated covariance matrix T̂ . Then, if the null hypothesis is
true, it can be shown rather easily that

γ̂ ′C ′(C ′T̂
−1

C )−1C ′γ̂ (9)

has an asymptotic χ2 distribution with the number of degrees of
freedom equal to the number of rows in the C matrix. This is
the multivariate equivalent of our general linear combination
hypothesis procedure discussed in Psychology 310. It should be
noted that this is based on asymptotic theory that, in turn,
depends on the assumption of multinormality, and tends to
exhibit slow convergence. Only at very large samples would
such statistics be accurate if used to test random effects. This
parallels the reason why, in Psychology 310, we avoided Z tests
on variances.

The simplified treatment of the Wald Statistic in Willett and
Singer is incomplete and, in its attempt to maintain simplicity,
not really correct.
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Information-Based Criteria for Comparing Non-Nested
Models

We have a variety of null hypothesis tests to compare models
for exact equivalence. Frankly, the modern view is that these
are useful but should not be taken too seriously, for the same
reasons that hypothesis tests in general should not be taken too
seriously.

Deviance-based hypothesis tests aren’t available for comparing
non-nested models. Moreover, when models are nested, the
more complex model always fits better (except in artificial
examples) because models almost never fit perfectly. Added
complexity in a nested model framework always improves fit.
For example, in multiple regression, adding predictors always
improves R2.
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Information-Based Criteria for Comparing Non-Nested
Models

Deviance-based hypothesis tests aren’t available for comparing
non-nested models. Moreover, when models are nested, the
more complex model always fits better (except in artificial
examples) because models almost never fit perfectly. Added
complexity in a nested model framework always improves fit.
For example, in multiple regression, adding predictors always
improves R2. Adding factors in factor analysis always improves
fit.

So there is an inevitable tradeoff between complexity and the
quality of a model’s fit. What we seek is a model that has good
fit and good parsimony.
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The Akaike (AIC) and Schwarz (BIC) Criteria

A variety of model-fitting statistics have been developed to help
us select a model in a good region of the complexity-fit tradeoff.
Suppose we fit a set of models to the same data.

The Akaike Information Criterion (AIC) is applied to all the
models, and the model with the lowest value of the AIC
criterion is selected.

The Schwarz Bayesian Information Criterion (BIC) is used in a
similar manner.
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The Akaike (AIC) and Schwarz (BIC) Criteria

The AIC and BIC are only useful in a relative sense, and must
be applied to the same data, for models explaining the same
variables. Because these statistics are only used in a relative
sense, they may be rescaled monotonically in any way you find
convenient. Consequently, you will see different versions of the
criteria.

AIC = χ2 + 2k

BIC = χ2 + lnnk
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Plotting Model Trends

> pdf("ModelFitPanel.pdf")

> par(mfrow = c(1,3))

> #Plots

> #Model B

> fixef.b <- fixef(model.b)

> fit.b <- fixef.b[[1]] + time[1:3]*fixef.b[[2]]

> plot(alcohol1$age[1:3], fit.b, ylim=c(0, 2), type="b",

+ ylab="predicted alcuse", xlab="age")

> title("Model B \n Unconditional growth model")

> #Model C

> fixef.c <- fixef(model.c)

> fit.c0 <- fixef.c[[1]] + time[1:3]*fixef.c[[3]]

> fit.c1 <- fixef.c[[1]] + fixef.c[[2]] +

+ time[1:3]*fixef.c[[3]] +

+ time[1:3]*fixef.c[[4]]

> plot(alcohol1$age[1:3], fit.c0, ylim=c(0, 2), type="b",

+ ylab="predicted alcuse", xlab="age")

> lines(alcohol1$age[1:3], fit.c1, type="b", pch=17)

> title("Model C \n Uncontrolled effects of COA")

> legend(14, 2, c("COA=0", "COA=1"))

> #Model E

> fixef.e <- fixef(model.e)

> fit.ec0p0 <- fixef.e[[1]] + .655*fixef.e[[3]] +

+ time[1:3]*fixef.e[[4]] +

+ .655*time[1:3]*fixef.e[[5]]

> fit.ec0p1 <- fixef.e[[1]] + 1.381*fixef.e[[3]] +

+ time[1:3]*fixef.e[[4]] +

+ 1.381*time[1:3]*fixef.e[[5]]

> fit.ec1p0 <- fixef.e[[1]] + fixef.e[[2]] + .655*fixef.e[[3]] +

+ time[1:3]*fixef.e[[4]] +

+ .655*time[1:3]*fixef.e[[5]]

> fit.ec1p1 <- fixef.e[[1]] + fixef.e[[2]] + 1.381*fixef.e[[3]] +

+ time[1:3]*fixef.e[[4]] +

+ 1.381*time[1:3]*fixef.e[[5]]

> plot(alcohol1$age[1:3], fit.ec0p0, ylim=c(0, 2), type="b",

+ ylab="predicted alcuse", xlab="age", pch=2)

> lines(alcohol1$age[1:3], fit.ec0p1, type="b", pch=0)

> lines(alcohol1$age[1:3], fit.ec1p0, type="b", pch=17)

> lines(alcohol1$age[1:3], fit.ec1p1, type="b", pch=15)

> title("Model E \n *Final* model")

> legend(14, 2, c("COA=0, low peer", "COA=0, high peer",

+ "COA=1, low peer", "COA=1, high peer"))

> dev.off()
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Plotting Model Trends
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Empirical Bayes Estimates of Individual Trajectories

In our preliminary exploratory analyses, we plotted individual
trajectories based on OLS estimation from an individual’s data.
Singer and Willett (pp. 132–137) explain how to calculate
improved estimates of an individual’s trajectory. In a lab
exercise, we will examine how to compute these with R.
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Normality
Homoscedasticity

Displaying Residual Plots

> pdf("NormalityPanel.pdf")

> par(mfrow = c(3,2))

> resid <- residuals(model.f)

> qqnorm(resid)

> #creating the standardized residual (std epsilon.hat)

> resid.std <- resid/sd(resid)

> plot(id, resid.std, ylim=c(-3, 3), ylab="std epsilon hat")

> abline(h=0)

> #Middle left panel

>

> #extracting the random effects of model f

> ran <- attr(model.f,"ranef")[1:82]

> qqnorm(ran)

> #Middle right panel

>

> #standardizing the ksi0i.hat

> ran1.std <- ran/sd(ran)

> plot(id[age==14], ran1.std, ylim=c(-3, 3), ylab="std psi_0i hat")

> abline(h=0)

> #Lower left panel

> ran2 <- attr(model.f,"ranef")[83:164]

> qqnorm(ran2)

> #Lower right panel

>

> #standardizing the ksi1i.hat

> ran2.std <- ran2/sd(ran2)

> plot(id[age==14], ran2.std, ylim=c(-3, 3), ylab="std psi_1i hat")

> abline(h=0)

> dev.off()
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Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Displaying Residual Plots
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A Linear Growth Model
An Example — Early Childhood Intervention

Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Examining Residual Variance

> plot(age, resid, ylim=c(-2, 2), ylab="epsilon.hat",

+ xlab="AGE")

> abline(h=0)
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A Linear Growth Model
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Multilevel Modeling Results
Recentering Time-Invariant Predictors to Improve Interpretation
Deviance Statistics for Comparing Nested Models
Wald Statistics for Testing Composite Hypotheses

Information-Based Criteria for Comparing Non-Nested Models
Plotting Model Trends

Examining Model Assumptions

Normality
Homoscedasticity

Examining Residual Variance

> pdf("ResidPanel.pdf")

> par(mfrow=c(2,2))

> #Upper left panel

> plot(coa[age==14], ran, ylim=c(-1, 1),

+ ylab="ksi0i.hat", xlab="COA")

> abline(h=0)

> #Upper right panel

> plot(peer[age==14], ran, ylim=c(-1, 1),

+ xlim=c(0, 3), ylab="ksi0i.hat", xlab="PEER")

> abline(h=0)

> #Lower left panel

> plot(coa[age==14], ran2, ylim=c(-1, 1),

+ ylab="ksi1i.hat", xlab="COA")

> abline(h=0)

> #Lower right panel

> plot(peer[age==14], ran2, ylim=c(-1, 1),

+ xlim=c(0, 3), ylab="ksi1i.hat", xlab="PEER")

> abline(h=0)

> dev.off()

Multilevel The Multilevel Change Model
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Examining Residual Variance
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