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This study introduces the replacing rule as a simplification of Stelzl's (1986) four rules for the 
generation of recursive equivalent models. The replacing rule is applicable to nonrecursive as well 
as recursive models, and generates equivalent models through the replacement of direct paths with 
residual correlations, through the replacement of residual correlations with direct paths, or through 
the inversion of path directions. Examples of the use of the replacing rule are provided, and its 
advantages over Stelzl's four rules are discussed. 

Increased application of covariance structure modeling (CSM) as a general 
method of testing structural relations among variables has been accompanied by 
a greater awareness of the data analytic problems associated with CSM. One 
problem which has eluded the attention of most researchers, save for a few (e.g., 
Bentler & Chou, 1987; Duncan, 1969; Stelzl, 1986) is model equivalence. 
Equivalent models are equivalent at a mathematical level, although they have 
distinct path diagrams and provide different interpretations. 

If model equivalence is not seriously considered in empirical research, a best 
fitting model among alternative models may be interpreted as a plausible model. 
Jn this case, the term optimal model refers to this best fitting model. But because 
many distinct models can fit a given data set equally well, there is a need to 
distinguish the optimal model from a best fitting model. The existence of 
multiple, equally good-fitting models or equivalent models rules out the use of 
the term best fitting model. The term optimal model will be defined as the most 
theoretically plausible model of the equivalent models which could have 
generated the data. The optimal model will show a very good fit with large 
sample data however; there will be many implausible models showing this same 
degree of fit. 

Equivalent models have been defined (JOreskog & Sorbom, 1981; Stelzl, 
1986) as follows. For any given model, there will exist alternative models which 
generate identical estimates of population covariance matrices and, as a result, 
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fit the observed data equally well (Bentler, 1980; Duncan, 1969, 1975; Heise, 
1975; James, Mulaik, & Brett, 1982; J6reskog & Sorbom, 1981; Kenny, 1979). 
Models are called equivalent when they reproduce the same set of covariance 
matrices. Equal fit is a necessary result of model equivalence. However, equal 
fit is not proof of model equivalence because fit measures from two models may 
only appear identical due to rounding error. Luijben (1988) presents some 
conditions for two models of equal fit to be equivalent models. 

Model equivalence has important implications for the search for the optimal 
model, many of which were discussed by Lee ( 1987). Given the existence of 
models equivalent to one's own, Lee argued for the desirability of identifying 
and evaluating the equivalent models. Identifying equivalent models will yield 
support for a given model if the equivalent models are ruled out or can reveal 
previously unrecognized plausible alternative models. 

Although the possibility of equivalent models has never been rejected, few 
researchers have raised this issue in regard to the conduct of empirical research. 
Duncan (1969), in an early article, presented nine distinct models that were 
equally consistent with the data and emphasized that the choice among these 
models must go beyond data analysis. Some of the nine models in Duncan are 
recursive, others are non-recursive. Karlin, Cameron, and Chakraborty (1983) 
and Bentler and Chou (1987) pointed out that the complete reversal of a path 
diagram generates an equivalent models in some cases. 

However, Stelzl (1986) seems to be the first to investigate model equivalence 
in a systematic way. Stelzl developed four rules for generating equivalent 
models, but her rules were restricted to recursive models. In this study, our 
purpose is to develop a simple rule that can incorporate the applicability of 
Stelzl's four rules and be applied to nonrecursive models as well. In the course 
of the discussion, a review of model equivalence in CSM will be presented, 
followed by an introduction of our rule, which has been termed the "Replacing 
Rule." Finally, Stelzl's rules will be compared with the replacing rule, and the 
relative advantages of the replacing rule will be discussed in full. 

Review of Model Equivalence in CSM 

Definition and Implications 

Despite several different mathematical formulations of CSM (e.g., Bentler & 
Weeks, 1980; Joreskog, 1974, 1977; McArdle & McDonald, 1984; McDonald, 1978), 
model estimates of covariance matrices and model equivalence can be generally 
explained. Given a sample covariance matrix S for observed variables, each 
nonredundant variance/covariance element in Sis written as a mathematical function 
of the model's parameters. This equation is called a normal equation (Duncan, 1975: 
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James et al., 1982). Given k observed variables, there are k(k+ 1 )/2 normal equations 
relating information from the observed data to the parameters in the model. Unknown 
or free parameters are estimated by solving the normal equations. Substitution of the 
parameter estimates into the normal equations results in population variances/ 
covariances estimated by the model. A symbol E will be used to refer to this estimated 
(fitted) covariance matrix 1• Equivalence of }.:s between two models defines model 
equivalence in CSM; models generating identical Es are identified as equivalent models 
regardless of their distinct causal patterns (JOreskog & Sorbom, 1981; Stelzl, 1986). 

The definition of model equivalence given by JOreskog and Sorbom (1981) and 
Stelzl (1986) will be supplemented by distinguishing between the concepts of 
equivalence-in-principle and equivalence occurring only empirically. For a particular 
model, a set of equivalent models exists that generate identical Es with any input 
data. This type of model equivalence will be called equivalence-in-principle (EIP). 
Some models generate identical Es only when they are fitted to a specific data set. 
This type of model equivalence is sample-specific and cannot be generalized to all 
data sets. Thus it will be called empirical occurrence of equivalence (EOE). 
Application of Stelzl 's rule and the replacing rule generates EIP models. 

When a model has very few over-identifying restrictions and/or many of the 
parameter values are equal or very close, EOE may be observed (Lee, 1987). 
When parameter values are equal or very close, normal equations simplify and 
over-identifying equations are likely to become equal. As a result, the number 
ofnonredundant normal equations may equal the numberofunknown parameters. 
This situation is likely to occur in the numerical analysis of CSM when there are 
very few over-identifying restrictions in the model. An equal number of normal 
equations and free parameters is a necessary condition for a model to be just
identified. When two models are just-identified, their Es are exactly the same as 
the input data S; that is, they generate identical Es. 

Regardless of EIP or EOE, the numerical value for a particular fit index 
defined by the discrepancy of E and S will be the same across the models. 
Sometimes, the value for a particular fit index may be identical across two 
models due only to the rounding procedure in the computer program. All the 
elements in the Es need not be correspondingly identical for identical fit values 
to occur. This case should not be called model equivalence because model 
equivalence requires an identical value of each element}.: across the models. In 
this article, we refer to only EIP as model equivalence, unless noted otherwise. 

Lee (1987) discussed implications of model equivalence at different stages of 
applying CSM: In modeling at the hypothesis generation stage, during the specification 
search, at the end of the specification search, and for the final acceptance of the 

1 The fitted covariance matrix of observed variables is given as the "fitted moment matrix" 
in the printed output of LISREL (Jiireskog & Sorbom, 1981 ). 
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model. During the hypothesis generation stage, alternative models may be 
constructed a priori such that some of these competing models are equivalent. 
Application of rules (e.g., Stelzl, 1986) can reveal which models are equivalent. 
In fact, it would be conceivable, though unlikely, that some situations exist in 
which all competing models of interest are equivalent in which case the 
collection of data becomes meaningless (Stelzl, 1986). During a specification 
search, equivalent models are generated when LISREL modification indices 
have the same value on two or more fixed/constrained parameters. The models 
defined by freeing any one of the corresponding parameters show equal fit. 
Equivalent Es are observed for these equally fitting models2• The equivalent 
models observed in this way may represent EIP or EOE. 

At the end of a specification search, it is conceivable that one may have 
selected a model equivalent to the optimal model rather than the optimal model 
itself. Regardless of the stage the equivalent models are generated, empirical 
data or empirical fit indices cannot be used to decide among the equivalent 
alternatives. Instead, this decision can only be accomplished with substantive 
theory because equivalent models have distinct path diagrams, each of which 
represents a different causal hypothesis. 

Considering the problematic occurrence of model equivalence in empirical 
research, there is a need for a priori rules to test model equivalence at the 
hypothesis generating stage and/or to generate equivalent models to a model 
finally chosen through specification searches. Stelzl (1986) developed four a 
priori rules to generate equivalent models3. Thus, we will now discuss Stelzl's 
approach to model equivalence, followed by a discussion of our own approach. 
It will be seen that one of the differences between the two approaches lies in the 
nature of the restrictions placed on the generation of equivalent models. 

2 Luijben (1988) approaches model equivalence in the light of modification indices (Mis). 
He describes a sufficient condition in which model modification based on identical Mis leads to 
equivalent models. However, it is not empirically known how often model modifications based 
on identical Mis do not satisfy his sufficient conditions; it is not known how often modified models 
based on identical Mis may not produce identical Es, that is, equivalent models. Authors have 
always observed identical Es after model modifications based on identical values of Mis. 

3 In an application to artificial intelligence, Glymour, Scheines, Kelly, and Spirtes (1987) 
developed a computer program (TETRAD) to find candidate models which would fit at least as 
well as a given model. TETRAD provides these candidate models without fitting the models to 
the data. This program may be useful in empirically finding equivalent models. Many different 
causal patterns suggested by TETRAD may generate identical Es when they are actually fitted to 
data. However, our interest here is in a priori rules which can determine equivalent models without 
using data. 
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Restrictions in Developing A Priori Rules 

A covariance structure model consists of two submode ls: A structural model 
specifying the relationships among latent variables, and a measurement model 
specifying the relationships between latent variables and measured variables. 
Stelzl's (1986) rules and the rules we develop here for generating equivalent 
models are relevant to only the structural portion of a covariance structure 
model. In discussing the rules for generating equivalent models, the measurement 
model is assumed to be known and fixed 4• In the present study, the term model 
will refer to a structural model. There are cases where equivalent models can be 
obtained when the restriction of a fixed measurement model is dropped, but 
systematic rules have not been determined for such cases. Thus, model equivalence 
will be restricted to the equivalence of the structural portion of two or more 
covariance structure models in this study. 

Although equivalent models can be generated by using equality constraints 
or other functional constraints, both Stelzl 's (1986) rules and the rule we are 
developing here concern structural models with zero path coefficient as the only 
type of restriction. In both Stelzl' s rules and our rule, the number of free 
parameters do not change, only the specification of fixed and free parameters 
changes in generating equivalent models. 

Whereas Stelzl 's (1986) rules require that a model be recursive, the 
replacing rule places a less restrictive condition on the recursiveness of the 
model. The replacing rule requires limited block-recursiveness of a model. The 
term block-recursiveness is used in the same sense that the term block-recursive 
equation systems is used in econometrics (Km en ta, 1971; Pindyck & Rubinfeld, 
1981): In terms of a path diagram, a block-recursive equation system is 
expressed in such a way that relations among variables within each block may 
be recursive or nonrecursive but the relations across blocks are always recursive. 

Assuming that any model can be viewed as block-recursive, a model can be 
divided into three blocks that are recursive across themselves: A preceding 
block, a focal block, and a succeeding block. In this study, the focal block refers 
to a set of equations or their path diagram to which the replacing rule will be 
applied. 

Relations within the preceding block or succeeding block may be recursive 
or nonrecursive. However, it is essential that the relations within a focal block 
be recursive to apply the replacing rule. That is, criterion variables in the 
regression equations of a focal block should be connected either by a direct path 
or a residual correlation, but not by both in the path diagram. Because of this limit 

4 Working with a structural model given a fixed measurement model is the approach that has 
been formally defined and evaluated by Anderson and Gerbing (1988). 
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in the focal block, we say that the replacing rule requires limited block
recursiveness, not just block-recursiveness. Compared to the recursiveness of 
the whole model required by Stelzl's approach, this approach is less restrictive. 

Replacing Rule 

In a relationship X-Y, we will call X the source variable and Y the effect 
variable; Ux and Uy stand for the residuals of X and Y. Given a focal block and 
the limited block-recursiveness of a model, the replacing rule is defined as 
follows: A direct path, that is, X-Y, in the focal block can be replaced by a 
residual correlation between them, the correlation between Ux and Uy, as long 
as the predictor variables5 of the effect variable (Y) are the same as or include 
those of the source variable (X). The reverse application of this procedure will 
result in an equivalent model as well: any residual correlation (e.g., the 
correlation between Ux and Uy) within a focal block where the condition of 
limited block-recursiveness holds in the model can be replaced by a direct path, 
x-Y or X +-Y, the choice between which is made so that the effect variable has 
the same or more predictors in the preceding block (PBL) than the source 
variable has after the change. 

This rule is not affected by the recursiveness or nonrecursiveness in the 
preceding or succeeding block. This property of the replacing rule will now be 
mathematically shown. Assume an x-Y relationship within a focal block. Let 
X have direct paths with predictor variables (Pl, ... ,Pm) and Y have both 
(Pl, ... ,Pm) and (Ql, ... ,Qn) as predictor variables in the PBL. The process 
of replacing the direct path from X to Yby their residual correlation in the focal 
block will be shown first. 

The structural equations of X and Y are described as: 

(1) X = F(Pl, ... ,Pm)+ u, 

(2) Y = G(P1, ... ,Pm)+ H(Ql, ... ,Qn) + bX + v, 

where COV(u, v) is non-zero, u is the residual of X, vis the residual of Y and b, 
F, G, or H represent path coefficients. The deletion of X-Y is equivalent to a 
reduction of Equation 2 by substituting Equation 1 into the right hand side of 
Equation 2. Then, variable Xis removed from Equation 2 resulting in: 

5 We use the term predictor in the familiar regression analysis-sense of the term. In terms of 
a path diagram, a predictor has a direct path to a dependent variable. fn the discussion of the 
replacing rule, the term predictor will refer to the predictor of the focal block, not to the predictor 
in a predictor-criterion relationship between variables within a focal block. 
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Y = J(Pl, .. . ,Pm)+ H(Ql, ... ,Qn) +(bu+ v) or 

(3) Y = J(Pl, ... ,Pm)+ H(Ql, ... ,Qn) + e, 

where J represents the changed values of path coefficients. 

(4) COV(u,e) = COV(u,bu + v) = b V AR(u) + 0"' 0, 

that is, the residual correlation between X and Y becomes non-zero. Thus, in 
terms of model specification, deleting X-+ Y requires freeing the residual 
correlation between X and Y. No other specification is altered. This procedure 
does not change the number of parameters. 

Replacing the direct path fromX to Ywith their residual correlation is nothing 
more than a path diagramic representation of the algebraic reduction of 
Equation 2. If the algebraic reduction is correctly reflected in the path diagram, 
the covariances among the variables are unaltered. The covariances among the 
variables in the PBL do not change because they are not affected by any change 
in the following blocks. The relationships between the PBL and focal block are 
unchanged as well. 

The covariance between X and Y does not change by the reduction of 
Equation 2 into Equation 3. The covariance between X and Y can be obtained 
either from Equations 1 and 2 or from Equations 1 and 36. Both ways are 
algebraically equivalent. Thus, the covariances among the variables in the PBL 
and focal block are unaltered. Because the specification of the succeeding block 
is unaltered, the covariances of the variables in the whole model are equivalent 
to those before applying the replacing rule. This equivalence necessitates the 
equivalence of Es between the models before and after applying the replacing 
rule, which meets the definition of model equivalence. 

The equivalence between the model specifyingX-+ Yand the model specifying 
COV(Ux,Uy) justifies the reverse application of the replacing rule, as long as the 
predictors of the effect variable are equal to or include those of the source 
variable after the change. 

In applying the replacing rule, the recursiveness or nonrecursiveness of the 
model does not matter. As shown in Equations 1 and 2, the relational forms 
which the variables Pl through Pm or Ql through Qn can take in the PBL are 

6 In CSM, variables are assumed to be measured from their means. Then, taking the 
expectation operator on the product of two variables (or vectors of variables) results in a 
covariance (or covariance matrix). Because the product of Equations 1 and 2 is algebraically the 
same as that of Equations 1 and 3, COV(X, Y) from Equations 1 and 2 is the same as that from 
Equations 1 and 3, given that COV(u,e) is non-zero. 
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not limited; they can be recursive or nonrecursive. Whether the PBL is recursive 
or nonrecursive does not affect the algebraic justification of the replacing rule. 
Whether the relationships in the succeeding block are recursive or nonrecursive 
is never a concern in applying the replacing rule. Thus, the recursiveness or 
nonrecursiveness of the model is of no concern in applying the replacing rule as 
long as the restriction of limited block-recursiveness holds. 

A demonstration of applying the replacing rule will now be given. An initial, 
over-identified nonrecursive model is shown as Model lA in Figure 1. 

Let's focus on the four variables X4, X5, X6, and X7 in Model lA to show 
the application of the replacing rule. It will be examined whether the replacing 
rule can be applied to the following focal blocks: (X4,X5), (X5,X7), and (X4,X6). 
A symbol U with appropriate subscript will stand for the residual of each 
variable. 

Demonstration 1: Replacement of X 4-X5 by COV(U 4' U sJ 

With the focal block of (X4,X5), limited block-recursiveness holds in Model 
lA. The three blocks are as follows: (Xl,X2,X3), (X4,X5), and (X6,X7,X8,X9). 
Recursiveness holds across the three blocks and within the focal block. Examining 
the predictors of the focal block, it is obvious that the effect variable X5 has the 
same predictor (X3) as the source variableX 4, and one more predictor (Xl ). Thus 
X4-X5 can be replaced by COV(U4,U5), where the two-way arrow indicates a 
residual correlation. This type of modification is a generic case of applying the 
replacing rule and may be useful when the directional interpretation of the 
relationship betweenX 4 andX5 is not substantively interesting. When the reverse 
application of the replacing rule is attempted, X 4 should be the source andX5 the 
effect variable. 

Demonstration 2: X5-X7 cannot be replaced by COV(U5'U7) 

With the focal block of (X5,x7), model lA is not block-recursive. Variable 
X7 has a nonrecursive relationship with X8. In defining a block, variables in a 
nonrecursive relationship should be grouped together so that recursiveness 
holds across blocks. Thus X7 andX8 should be in the same succeeding block. X7 
and X8 do not comprise a focal block because they do not stand in a recursive 
relationship. Thus, (X5,x7) is not a legitimate focal block to apply the replacing 
rule. Even whenX7 does not have a nonrecursive relationship with other variables, 
X5-X7 cannot be replaced by COV(U5,U7) because the predictors ofX7 do not 
include those of X5. 
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Model lA 

Model lB 

Model 1C 

Figure 1 
Models to illustrate the replacing rule. 
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Demonstration 3: Replacement of X4---+X6 by COV(U4,Ur) or X4-X6 

With X4---+X6 as a focal block, limited block-recursiveness holds in Model 
lA. VariableX6 has the same predictor (X3) as variableX4. Thus, the direct path 
X4---+X6 can be replaced by COV(U4,U6). It is interesting to see a reverse 
application of the replacing rule in this case. 

The covariance between U4 and U6 can be replaced by X4---+X6 or X4-X6 
because for either causal direction, the source variable and the effect variable 
have the same predictor (X3) in the PBL. Thus, this result represents a special 
case in applying the replacing rule: In a block-recursive system when variables 
in a focal block have the same predictor(s) in the PBL, the focal block is defined 
as asymmetric focal block and the variables as symmetric variables. In a symmetric 
focal block, inverting the path direction, replacing the direct path with a residual 
correlation, or replacing a residual correlation with a direct path of arbitrary 
direction between the symmetric variables generates a model equivalent to the 
initial model. This special case of applying the replacing rule to a symmetric 
focal block is very important in explaining Stelzl's (1986) rule 2 in a later 
section. 

Application to a just-identified block 

To illustrate another special case of applying the replacing rule, we will 
examine an application to a saturated or just-identified PBL. Saturation or just
identification in a PBL occurs when all potentially meaningful parameters are 
specified and thus there is no parsimony or restriction in the block. The 
parameters in a model (note that we mean structural model in this study) are path 
coefficients and variances/covariances of residuals. Because the identification 
and estimation of a PBL can be dealt with independently of the succeeding 
blocks in a block-recursive system, a PBL can be viewed as a model itself. Then 
a just-identified PBL can be considered as a just-identified model. A good 
discussion of just-identified recursive/nonrecursive models is given in Duncan 
(1975, Ch. 3 and Ch. 5). 

Duncan (1969) presents nine equivalent models, all of which are just
identified recursive or nonrecursive models. When a just-identified model is 
restructured into another just-identified model, covariances among the variables 
do not change. This fact demonstrates that a just-identified PBL can be changed 
into another just-identified PBL without changing the covariances among the 
variables in the PBL. That is, the modified model with the new just-identified 
PBL is equivalent to the initial model. 

Typically, a PBL is just-identified when any two variables are connected by 
either a direct path or residual correlation, but not by both; our replacing rule is 
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limited to this type of just-identified block (JID block). In this case, all the 
variables in a JID block are completely connected. The path direction is 
arbitrary, and a direct path can be replaced by residual correlation 7, or a residual 
correlation can be replaced by a direct path in a JID block to generate an 
equivalent model. This procedure resembles the application of the replacing rule 
to symmetric focal block. 

When equivalent models are generated by applying the replacing rule to a 
JID block, the JID block becomes a focal block. Because all variables can be 
completely connected by only correlations and all correlated variables are 
symmetric in a JID block, we can assume that all the variables in a JID block are 
symmetric variables. Then, changing the path direction and replacing a (residual) 
correlation with a direct path of arbitrary direction or replacing a direct path with 
(residual) correlation in a JID block is another way of applying the replacing rule 
on symmetric variables. This special case of applying the replacing rule on a JID 
block is very useful in explaining Stelzl' s (1986) rule 1 in a later section. 

An example of applying the replacing rule to a JID block is shown in models 
lB and lC of Figure 1. In Model lB, variablesX1,X2,X3, andX4 are defined 
as a PBL. Because any two variables are related either by a direct path or 
correlation, this PBL is just-identified. Recursiveness holds in this JID block, 
which becomes a focal block. The equations of variables XS and X6 form the 
succeeding block dependent on this JID block. Thus, limited block-recursiveness 
holds in the model. The replacing rule can be applied on the JID block to generate 
equivalent models. Any correlation between two independent variables can be 
changed into a direct path of arbitrary direction and any direct path can be 
inverted or changed into a residual correlation within this block. One of the 
modified models according to the rule is shown in Model 1 C, a path diagram 
which looks dramatically different from Model 1 B. However, Model 1 Band 1 C 
are equivalent, that is, when they are fitted to a covariance matrix, they will 
generate identical fitted covariance matrices. 

Before we close this section, we want to emphasize the usefulness of 
repeated applications of the replacing rule in generating equivalent models 
across a series of modified models. Once an equivalent model is generated by the 
application of the replacing rule, the rule can be applied again to the equivalent 
model to generate other equivalent models. For instance, A and B in A-+ B---+C 
form a JID block and A-B---+C is an equivalent model created by applying the 
replacing rule. The replacing rule can be applied to the focal block of B and C 
in A-B---+C; since Band C form a JID block, and thus, A-B-C is another 

7 A correlation between exogenous variables is a specific type of residual correlation if the 
exogenous variables are viewed as residuals. Thus, by (residual) correlation we refer to correlation 
of exogenous variables or correlation between errors in equations depending on the context. 
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equivalent model. The replacing rule was not applicable to the focal block of B 
and C in the initial model A-B-C. However, the block which includes Band 
C in the model A+-B-C is a JID block and becomes the focal block to apply 
the replacing rule. As a result of repeated applications of the replacing rule, 
additional equivalent models can be generated. 

Examples 

To demonstrate the application of the replacing rule, a model is selected 
from the literature and modified so that applications of the replacing rule can be 
easily shown. The path analysis model of Locke, Frederick, Bobko, and Lee 
(1984) was selected. Their study investigated the relationship among self
efficacy, goals, task strategies and task performance. A variation of Locke et 
al. 's model is shown in Figure 2. Our purpose is only to demonstrate how to apply 
the replacing rule. We will show the application of the replacing rule on four 
relationships: Xl and X2; XS and X6; XS and X7; X6 and X7. 

In Figure 2, X1 and X2 are correlated independent variables and form a JID 
block. Thus, the correlation between Xl and X2 can be replaced by a direct path 
of arbitrary direction as shown in Figure 3. Variables XS andX6 are symmetric 
and form a symmetric focal block. The direct path XS-X6 can be replaced by 
XS+-X6, or the residual correlation between them as shown in Figure 3. 

XI: Ability 
X2: Strategy Planning 
X3: Strategies Used 

XS: Composite Self Efficacy 
X6: Goal 
X7: Performance 

X4: Post Training Performance 

Figure 2 
A variation of Locke, Frederick, Lee and Bobko's (1984) model. 
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or 

, ....... ---8 
or 

Figure 3 
Applications of the replacing rule on the model 

If X3 had a direct path instead of a reciprocal relationship with X 4, variable 
X3 could form a JID block with Xl and X2. Then, the path directions amongXl, 
X2, andX3 could be of arbitrary direction or any one of the direct paths could be 
replaced by a residual correlation. 

JULY 1990 325 



S. Lee and S. Hershberger 

With the focal block of X6 and X7, the requirement of limited block
recursiveness holds in the model ofFigure 2. In the relationship betweenX6 and 
X7, the effect variableX7 has one more predictor (Xl) in the PBL than its source 
variable, X6. Thus, the two variables in X6-X7 are not symmetric. However, 
this is a generic case of applying the replacing rule, and the direct path can be 
replaced by residual correlation as shown in Figure 3. With the block of XS and 
X7 in Figure 2, block-recursiveness does not hold in the model. The relation 
betweenX6 and the block of XS andX7 is not recursive;X6 is a dependent variable 
of XS and is a predictorofX7 as well. Thus, the block of XS andX7 is not a focal 
block to which application of replacing rule can be considered. 

In the next section, a summary of Stelzl 's (1986) four rules for generating 
equivalent models will be given, and how the replacing rule can provide a more 
general method for identifying equivalent models is presented. 

Stelzl's Rules 

Stelzl (1986) employs four recursive models to present each of her four 
rules: We will call her models Po, Qo, Ro, and So. 

Stelzl's Rule I 

Stelzl's Rule 1 for recursive models will be introduced by model Po. 

Model Po 

Variables: A B ... E ... l. K ... P ... V 
Position: a b e k p v 
Zero paths: EK, IP 
All other paths are non-zero-paths running from left to right. 
To produce models equivalent to model Po, Stelzl 's rule 1 posits the following: 

(a) interchange the variables on position 1 to k-1 or (b) interchange the variables 
on position k+ 1 to p-1 or (c) interchange the variables on position p+ 1 to v or (d) 
interchange the variables on position e to k. A zero-path indicates no path between 
two variables. 

The variables in Stelzl's (1986) rule (a), (b), and (c) can be categorized into 
three sets of variables: The first set of variables is located before the end-point 
of the first zero-path; the second set of variables between two neighboring end
points of zero-paths; and the third set of variables after the end-point of the last 
zero-path. 

Stelzl's (1986) rule 1 will now be explained in terms of the replacing rule. 
Each set of variables in model Po can be viewed as a block in a block-recursive 
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system. The set of the variables before the end-point of the first zero-path forms 
a JID block, because all variables in this block are completely connected. Thus, 
the direction of any path in this block can be inverted to generate an equivalent 
model according to the replacing rule. Variables in the second set or in the third 
set form symmetric focal blocks by our definition because they have direct paths 
with all the variables in the previous block(s). Then, the direct path between any 
two variables within these two sets can be inverted arbitrarily according to the 
replacing rule. Inverting the path direction in the three blocks does not change 
the recursiveness of the relationships in each block, although the position of the 
variables must be changed in order for the path diagram to appear recursive. An 
example will now be shown. 

Suppose a simple path diagram as in Model 4A of Figure 4. 
In Model 4A, Xl and X2 form a JID block and X4 and XS are symmetric. 

First, the path directions between Xl and X2 can be inverted. Next, the path 
direction betweenX4 and XS in the symmetric focal block can be inverted. These 
two modifications are shown in Model 4B of Figure 4 (next page). Inverting the 
path directions in this way does not alter the recursiveness of the model. The 
positions of the variables can be adjusted so that the model appears recursive as 
in Model 4C. Changing the position of variables is another way of inverting path 
directions. Thus we do not differentiate between inverting path directions and 
changing positions of variables although Stelzl (1986) prefers the phrase 
changing positions of variables in her rules 1 and 2. Thus, the replacing rule, 
applied to recursive models, provides the same results as Stelzl 's rule (a), (b ), and 
(c) in generating equivalent models. 

Stelzl 's (1986) rule ( d) will now be discussed. The zero-path between E and 
K is the first zero-path in model Po. In the JID block of model Po, variable E can 
be moved to any position that keeps its zero-path with variableK. Suppose variable 
Eis moved to position k-1, adjacent to variableK. Then, the variables on position 
1 to k-2 and variable K form a new JID block. This is an example of a repeated 
application of the replacing rule. The variables on position 1 to k-2 and variable 
E comprise the original JID block. In a JID block, the position of the variables 
is arbitrary. Because the new JID block and original JID block share the first k-
2 positions, variable E (or K) can be moved to any of the first k-2 positions and 
to position k (or k-1 ). Thus, the position of variable K can be on position e and 
that of variable E can be on position k, which also results by applying Stelzl's 
rule (d). 

Stelzl's Rule 2 

Stelzl's rule 2 for recursive models will be introduced by model Qo. 
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Model 4A 

Model 4B 

Model 4C 

Figure 4 
Maintenance of model recursiveness after inversion of path direction. 
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Modef Qo 

Variables: AB . .. DEF . .. L MN . .. Q 
Zero-paths: EM, EN 
All other paths are non-zero paths. 
To produce models equivalent to model Qo, Stelzl's rule 2 posits a change 

in the positions of M andN: The adjacent variables Mand N are interchangeable 
as long as they have zero-paths originating from the same preceding variable( s ), 
regardless of the number of preceding variables simultaneously having zero
paths to M and N. 

Stelzl' s rule 2 will now be explained in tenns of the replacing rule. Variables 
Mand N are symmetric in a focal block if model Qo is viewed as a block-recursive 
system. Thus, the replacing rule allows changing M-+N into M+-N. M+-N is 
equivalent to the position change of Mand N as posited by Stelzl's rule 2. 

Stelzl's Rule 3 and 4 

Stelzl's rule 3 for recursive models will be introduced by model Ro. 

Mode/Ro 

Variables: AB ... E ... MN ... Q 
N has non-zero-paths from all preceding variables. 
All other paths may be zero-paths or non-zero-paths. 
To produce models equivalent to Ro, Stelzl' s rule 3 posits that a non-zero-path 

between N and any preceding variable, for example M, can be replaced by a residual 
correlation between the two variables. The reversal of this procedure also yields an 
equivalent model. When N is related to all of its predetermined variables by either 
a direct path or a residual correlation, the residual correlation between N and any 
preceding variable (e.g., M) can be replaced by a direct path, M-+N. A comparison 
of this rule with the replacing rule will be given after Stelzl's rule 4 is introduced. 

Stelzl's rule 4 for recursive models will be introduced by model So. 

Mode/So 

Variables: AB . .. DEF . .. L MN . .. Q 
Zero-paths: EM, EN 
Mand N should be adjacent and are connected by a direct path. 
M may have zero-path(s) or non-zero-path(s) from the preceding variables. 
N has non-zero paths from all the preceding variables but E. 
All other paths may be zero paths or non-zero paths. 
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To produce models equivalent to model So, Stelzl's rule 4 posits that the 
direct path from M to N can be replaced by the residual correlation between the 
two variables; when N has more than one zero-path with its preceding variables, 
M must have the same zero-paths as, or more zero-paths than, N has with the 
preceding variables. Conversely, the correlated residual between Mand N can 
be replaced by a direct path from M to N if Mand N are adjacent (M before N) 
and N has zero-paths with only the predetermined variables with which M also 
has zero-paths. 

Stelzl's rule 3 and 4 can be described in terms of the replacing rule. The 
relationship between Mand N can be viewed as a focal block in block recursive 
systems Ro and So. In this focal block, variable M is the source variable and N 
the effect variable. All the variables before this focal block form the PBL. In 
model Ro, the effect variable N has more predictors in the PBL than the source 
variable M. In model So, the effect variableNhas the same predictors in the PBL 
as the source variable M. The replacing rule deals with the two situations offered 
by models Ro and So; if the effect variable has the same predictors as or more 
predictors than the source variable, then the direct path from the source variable 
to the effect variable can be replaced by a residual correlation. Likewise, the 
reverse application of the replacing rule explains the reverse application of 
Stelzl's rules 3 and 4. Thus, the replacing rule subsumes Stelzl's rules 3 and 4 
when it is applied to recursive models. 

Conclusion 

The comprehensiveness of the replacing rule has been discussed and 
compared with Stelzl's four rules. The replacing rule, when applied to a 
recursive model, combines Stelzl 's rules 3 and 4. Application of the replacing 
rule to a JID block in a recursive model provides the same results as part of 
Stelzl 's rule 1, and application of the replacing rule to a symmetric focal block 
in a recursive model provides the same results as Stelzl's rule 2 and part of her 
rule 1. 

In addition to its theoretical comprehensiveness, the replacing rule has a 
broader applicability with simpler conditions for application. Once limited 
block-recursiveness holds in a model, there is a very simple condition that must 
be met in order to use the replacing rule on a focal block: An effect variable has 
the same predictors as, or more predictors than, the source variable has in the 
PBL. Since the publication of Stelzl's (1986) rules, little application has been 
made of them in empirical research. A possible reason for this neglect may lie 
in the complexity of description required in explaining models Po, Qo, Ro, and 
So, which must be examined by the researcher before application of the rules is 
considered. 
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Two special cases of applying the replacing rule were discussed: Symmetric 
variables in a focal block and a JID block. They are very useful in generating 
equivalent models that can provide logically /substantively different interpretations. 

Ease of drawing equivalent models 

The ease of drawing equivalent models with the replacing rule encourages 
its use in practice. We introduced the concept of inverting path direction by the 
replacing rule. In our discussion, we emphasized the preferability of the 
replacing rule compared to the position change of variables in Stelzl's rules 1 and 
2. The method of inverting path directions prevents mistakes which an unwary 
investigator might commit in generating equivalent models. 

In making position changes according to Stelzl' s rules, it is critical that the zero
paths and non-zero-paths that a particular variable has with others should not change 
after the position of the variable has changed. For instance, in a simple model 
A-+B-C, Stelzl's rule 1 allows a change in the positions of A and B to generate 
equivalent models. When the positions of A and B are changed, the new model 
should appear as B-AC, not B-+A-+C. Because A has a zero-path to C and B has 
a non-zero path to C in the initial model, these relationships should not be changed 
in the new model. However, it is very easy for a novice to be tempted to draw 
B-+ A-+C, which is not equivalent to A-+ B-+C. When the replacing rule is applied, 
this type of mistake is easily prevented. According to the replacing rule, A and B 
form a JID block in A-+B-+C; thus, the path direction can be inverted. The new ,..----., 
model appears as A+-B-+C, another form of B-+ A C, which can also be derived 
by a correct application of Stelzl's rule 1. Inverting the path direction prevents 
possible mistakes in changing the positions of variables. 

Broad opportunity with a JID block 

We would like to emphasize the role of a JID block in generating equivalent 
models. Because just-identification can occur in a nonrecursive PBL as well as 
in a recursive PBL, if a systematic method is known to change a recursive JID 
block to a nonrecursive JID or a nonrecursive JID to a recursive JID block, or 
from a nonrecursive JID block to another nonrecursive one, that method will 
allow us to deal with a focal block that is JID and nonrecursive. The replacing 
rule allows one to use a JID block to generate equivalent models. 

Resolving the indeterminacy of theories 

Finally, it must be considered, in light of the existence of multiple equivalent 
models, how one resolves the indeterminacy underlying the distinct models that 
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generated the same data. Data alone cannot provide such a resolution, for it is 
obvious that data or the statistics of fit measures do not distinguish equivalent 
models and thus do not inform or dictate any theory. Data normally supports 
multiple alternatives. Thus, one should be equipped with some rationale to rule out 
some causal connections as implausible. During specification searches, very often 
the MI of a path coefficient between two variables is identical to that of residual 
correlation between them; freeing either parameter may result in two equivalent 
models. If one is confident that all causal variables are specified in the model, one 
would choose freeing the path instead of freeing the residual correlation. If the 
relationship between the two variables is not theoretically interesting or seems to be 
spurious, the residual correlation should be chosen. 

If one generates equivalent models by the application of a priori rules, the 
following two conditions can be used to determine a better model among 
equivalent models: Time precedence and mediating mechanisms. Time 
precedence is cited as one of the conditions that exists between a cause and an 
effect (Cook & Campbell, 1979; James et al., 1982; Kenny, 1979). Effects follow 
causes in time. Causes do not run backwards in time, so some causal orderings 
are ruled out for variables measured at different time points. 

Mediating mechanisms are involved in most strong causal propositions, that 
is, the molar laws of Cook and Campbell (1979). According to Cook and 
Campbell, the term "molar laws" refers to "causal laws stated in terms of large 
and often complex objects" (p. 32); for example, weather condition has an effect 
on work performance. Mediating mechanism refers to the specified causal 
connections "at a level of smaller particles than make up the molar objects and 
on a finer time scale" (Cook & Campbell, 1979, p. 32); for example, the 
mediating mechanism between weather condition and work performance is the 
psychological state of perceiving the weather and adjusting one's motivation to 
work depending on the quality of the weather. If we specify the mediating 
mechanism as weather condition - psychological state - work performance, 
the path coefficient from the weather condition to work performance should be 
fixed at zero. Similarly, any causal connection should be "dependent on a 
theoretical rationale involving several mediating mechanisms" (James et al., 
1982, p. 35). Mediating mechanisms help to limit the acceptable causal 
connections among complex variables in a molar law. 

By the examination of time precedence and mediating mechanisms, it is 
hoped that at least the number of equivalent models is less than infinity. 
However, we still may not know at the moment, when faced with multiple 
equivalent models, how the structural process in each model captures the partial 
image of the whole picture. Therefore, it is advisable to retain multiple models 
if they are not falsified by data or by present theoretical rationale, until each of 
them is more specifically examined by more refined theories. Mulaik (1987) 
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argues that "progress in science benefits not from banning theorizing and 
hypothesizing but from the existence of numerous rival hypotheses and theories, 
even if they be bizarre, false, and currently untestable ... "(p. 21). When the 
optimal model is not easily determined, suspending the decision and retaining 
the multiple models is suggested until more rigorous evidence is accumulated 
through experiments, longitudinal studies, or other investigative means. 

One last suggestion in evaluating multiple alternative theories is to consider 
parsimony (Mulaik et al., in press). Some models have more conditions by which 
they could be falsified than others. The falsifiability of a model increases as 
fewer parameters are specified to be estimated from the data. Thus, among 
equivalent models, the one that specifies fewest parameters, that is, the most 
parsimonious model, has been subject to the most stringent test. This most 
parsimonious model should be chosen over less parsimonious models if they are 
equivalent models. However, this criterion of parsimony is not helpful for 
evaluating the equivalent models, generated by a priori rules or through identical 
Mis because these procedures do not change the numberof parameters. However, 
we do not rule out the possibility that equivalent models can have different 
numbers of parameters. If multiple equivalent models do have differing numbers 
of parameters, then parsimony would be the most useful criterion. 
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