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The Simple Linear Regression Model

The Simple Linear Regression Model

The model given in ALR4, page 21, states that

E(Y |X = x) = β0 + β1x (1)

Var(Y |X = x) = σ2 (2)

Essentially, the model says that conditional mean of Y is linear in X , with an intercept of β0

and a slope of β1, while the conditional variance is constant.
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The Simple Linear Regression Model

The Simple Linear Regression Model

Because there is conditional variability in Y , the scores on Y cannot generally be perfectly
predicted from those on X , and so, to account for this, we say

yi = E(Y |X = xi ) + ei (3)

= β0 + β1xi + ei (4)

As we pointed out in Psychology 310, the “statistical errors” ei are defined tautologically as

ei = yi − (β0 + β1xi ) (5)

However, since we do not know the population β1 and β0, the statistical errors are unknown
and can only be estimated.
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The Simple Linear Regression Model

The Simple Linear Regression Model

We make two important assumptions concerning the errors:

1 We assume that E(ei |xi ) = 0, so if we could draw a scatterplot of the ei versus the xi , we
would have a null scatterplot, with no patterns.

2 We assume the errors are all independent, meaning that the value of the error for one
case gives no information about the value of the error for another case.

Under these assumptions, if the population is bivariate normal, the errors will be normally
distributed.
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The Simple Linear Regression Model

The Simple Linear Regression Model

One way of thinking about any regression model is that it involves a systematic component
and an error component.

1 If the simple regression model is correct about the systematic component, then the errors
will appear to be random as a function of x .

2 However, if the simple regression model is incorrect about the systematic component,
then the errors will show a systematic component and be somewhat predictable as a
function of x .

3 This is shown graphically in Figure 2.2 from the third edition of ALR.
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The Simple Linear Regression Model

The Simple Linear Regression Model
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Statistical Notation in ALR

Statistical Notation in ALR

ALR uses a notation in Chapter 2 that is a mixture of standard and not-quite-so-standard
notation, but adjustment to it should be easy. Table 2.1 in ALR shows the standard symbols.
2.1 ORDINARY LEAST SQUARES ESTIMATION 

Table 2.1 Definitions of Symbolsa 

Quantity 

x 
y 
sxx 
sD; 
SDx 
SYY 
sD; 
SDy 
SXY 
Sxy 

rxy 

2.x;ln 
2.y;ln 

Definition 

2.(x; - :X)2 = 2.(x; - x)x; 
SXX/(n -1 

'sxx/(n-1) 
2.(y; - y)2 = 2.(y; -Y)y; 
SYY/(n -1) 
'1sYY/(n-1) 
2.(x; -:X)(y; - Y) = 2.(x; -x)y; 
SXY/(n -1) 
sx/(SDxSDy) 

Description 

Sample average of x 
Sample average of y 
Sum of squares for the xs 
Sample variance of the xs 

23 

Sample standard deviation of the xs 
Sum of squares for the ys 
Sample variance of the ys 
Sample standard deviation of the ys 
Sum of cross-products 
Sample covariance 
Sample correlation 

aln each equation, the symbol I means to add over all n values or pairs of. values in the data. 

Although the ei are random variables and not parameters, we shall use the 
same hat notation to specify the residuals: the residual for the ith case, denoted 
ei, is given by the equation 

ei =Yi - E(YIX =xi)= Yi - j\ =Yr -('/30 + '/31x;) i = 1, ... 'n (2.3) 

which should be compared with the equation for the statistical errors, 

ei =Yi -(/30 + f31x;) i = 1, ... , n 

The computations that are needed for least squares for simple regression 
depend only on averages of the variables and their sums of squares and sums 
of cross-products. Definitions of these quantities are given in Table 2.1. Sums 
of squares and cross-products are centered by subtracting the average from 
each of the values before squaring or taking cross-products. Appropriate alter
native formulas for computing the corrected sums of squares and cross prod
ucts from uncorrected sums of squares and cross-products that are often given 
in elementary textbooks are useful for mathematical proofs, but they can be 
highly inaccurate when u~·ed on a computer and should be avoided. 

Table 2.1 also lists definitions for the usual univariate and bivariate summary 
statistics, the sample averages (.X, Y), sample variances (SD;, SD;), which are 
the squares of the sample standard deviations, and the estimated covariance 
and correlation (sxy' rxy).1 The "hat" rule described earlier would suggest 
that different symbols should be used for these quantities; for example, Pxy 
might be more appropriate for the sample correlation if the population cor
relation is Pxy· This inconsistency is deliberate since these sample quantities 
estimate population values only if the data used are a random sample from a 

1See Appendix A.2.2 for the definitions of the corresponding population quantities. 
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Ordinary Least Squares Estimation

Parameters and Estimates

We distinguish between the regression parameters and their estimates from sample data.
Parameters are unknown quantities that characterize a model. Estimates of parameters are
computable functions of data and are therefore statistics. To keep this distinction clear,
parameters are denoted by Greek letters like α, β, γ and σ , and estimates of parameters are
denoted by putting a “hat” over the corresponding Greek letter.
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Ordinary Least Squares Estimation Fitted Values and Residuals

Fitted Values

The sample-based estimates of β0 and β1 are denoted β̂0 and β̂1, respectively.
The fitted value for case i is given Ê(Y |X = xi ), for which we use the shorthand notation
ŷi ,

ŷi = Ê(Y |X = xi ) = β̂0 + β̂1xi (6)

In other words, the fitted values are obtained by applying the sample regression equation
to the sample data.
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Ordinary Least Squares Estimation Fitted Values and Residuals

Residuals

In a similar vein, we define the sample residuals: for the ith case, we have

êi = yi − ŷi (7)
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Ordinary Least Squares Estimation The Least Squares Criterion

The Least Squares Criterion

Residuals are the distances of the points from the sample-based regression line in the up-down
direction, as shown in ALR4 Figure 2.2. (Figure 2.3 in ALR3.)
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Ordinary Least Squares Estimation The Least Squares Criterion

The Least Squares Criterion

Consider any conceivable estimates of β0 and β1, and call them β∗0∗ and β∗1 . The residual sum
of squares (RSS) for a given β∗0 , β∗1 , is the sum of squares of the sample residuals around the
regression line defined by that particular pair of values, i.e.,

RSS(β∗0 , β
∗
1) =

n∑
i=1

[yi − (β∗0 + β∗1xi)]2 (8)

The OLS estimates β̂0, β̂1 are the values that minimize RSS. There are several well-known
identities useful in computing RSS in OLS regression. For example:

RSS(β̂0, β̂1) = SYY− SXY2

SXX
(9)

= SYY− β̂21SXX (10)
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Ordinary Least Squares Estimation The Least Squares Criterion

The Least Squares Solution

A solution to the “least squares problem” is given in ALR appendix A.3. The actual solution,
as you know from Psychology 310, is

β̂1 =
SXY

SXX
= ryx

SDy

SDx
(11)

β̂0 = y − β̂1x (12)

In computing the sample residuals, we utilize the two estimates given above, so an unbiased
estimate of σ2 has n − 2 in its denominator, i.e.,

σ̂2 =
RSS

n − 2
(13)
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Ordinary Least Squares Estimation Analyzing the Forbes Data

Analyzing the Forbes Data
We can easily fit a simple linear regression for the Forbes data. Let’s predict Lpres from Temp.

The easy way to get the regression coefficients is to use the linear model function in R.

> LogPressure <- log(forbes$pres)

> BoilingPoint <- forbes$bp

> fit <- lm(LogPressure ~ BoilingPoint)

> summary(fit)

Call:

lm(formula = LogPressure ~ BoilingPoint)

Residuals:

Min 1Q Median 3Q Max

-0.0073622 -0.0033863 -0.0015865 0.0004322 0.0313139

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.9708662 0.0769377 -12.62 2.17e-09 ***

BoilingPoint 0.0206224 0.0003789 54.42 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.00873 on 15 degrees of freedom

Multiple R-squared: 0.995, Adjusted R-squared: 0.9946

F-statistic: 2962 on 1 and 15 DF, p-value: < 2.2e-16
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Ordinary Least Squares Estimation Analyzing the Forbes Data

Detailed Regression Computations in R

We can use the capabilities of R to perform the computational formulas as given in ALR.

> X <- BoilingPoint

> Y <- LogPressure

> SXY <- sum((X-mean(X))*(Y-mean(Y)))

> SXX <- sum((X-mean(X))^2 )

> SYY <- sum((Y-mean(Y))^2 )

> beta.hat.1 <- SXY/SXX

> beta.hat.0 <- mean(Y) - beta.hat.1 * mean(X)

> e.hat <- Y - (beta.hat.0 + beta.hat.1 * X)

> RSS <- sum(e.hat^2)

> n <- length(Y)

> sigma.hat.squared <- RSS / (n-2)

> sigma.hat <- sqrt(sigma.hat.squared)
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Ordinary Least Squares Estimation Analyzing the Forbes Data

Detailed Calculations
Here are the results:

> SYY

[1] 0.2268754

> SXX

[1] 530.7824

> SXY

[1] 10.94599

> beta.hat.1

[1] 0.02062236

> beta.hat.0

[1] -0.9708662

> RSS

[1] 0.001143315

> sigma.hat.squared

[1] 7.622099e-05

> sigma.hat

[1] 0.008730463
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Properties of Least Squares Estimators

Introduction

As with any statistic, we are interested in the distributional properties of our least squares
estimators. Are they unbiased? What are their standard errors?

Section 2.4 of ALR, and the associated appendix sections, A.3 and A.4, develop formulas for
these properties that are given in many traditional regression textbooks.

These formulas can be confusing to someone with an intermediate level of statistical
background, because:

The notation is, in an important sense, inconsistent, or at least incomplete. (Explanation
below.)
The derivation of several classic formulas is based on an assumption that is clearly
inappropriate, so the classic formulas are not correct in most applications.
For now, we’ll simply give the formulas and discuss them briefly.
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Properties of Least Squares Estimators

Unbiasedness

The estimates are unbiased, i.e.,

E(β̂0) = β0 (14)

E(β̂1) = β1 (15)

E(σ̂2) = σ2 (16)
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Properties of Least Squares Estimators

Variance of Estimators

If we assume that errors have constant variance and are uncorrelated, then

Var(β̂0) = σ2

(
1

n
+

x2

SXX

)
(17)

Var(β̂1) =
σ2

SXX
(18)

Var(σ̂2) =
2σ4

n − 2
(19)

Cov(β̂0, β̂1) = −σ2 x

SXX
(20)
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Properties of Least Squares Estimators

Variance of Estimators

Why do we care about those formulas?

Because, as we shall see later, we use them for constructing confidence intervals and
hypothesis tests.
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Properties of Least Squares Estimators

Optimality Properties

Weisberg discusses optimality properties of OLS estimators on page 27 of ALR:

The Gauss-Markov theorem provides an optimality result for OLS estimates. Among
all estimates that are linear combinations of the ys and unbiased, the OLS estimates
have the smallest variance. If one believes the assumptions and is interested in using
linear unbiased estimates, the OLS estimates are the ones to use.

When the errors are normally distributed, the ols estimates can be justified using a
completely different argument, since they are then also maximum likelihood
estimates, as discussed in many mathematical statistics texts, for example, Casella
and Berger (1990).
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Properties of Least Squares Estimators

Estimated Variances

To estimate the sampling variance of our estimates, we simply substitute σ̂2 for σ2 in the
preceding formulas. For example,

V̂ar(β̂0) = σ̂2

(
1

n
+

x2

SXX

)
(21)

V̂ar(β̂1) =
σ̂2

SXX
(22)
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Properties of Least Squares Estimators

Estimated Standard Errors

At this point, in Section 2.5, ALR continues the prevailing tradition in departing from its own
notational standard. The “standard error” of a statistic was originally defined as a population
quantity, i.e., the square root of the sampling variance. As a population quantity, a standard
error also has an estimator, as we remember from Psychology 310. ALR uses the notation se()
to represent the estimator of a standard error rather than the standard error itself. So, when
Weisberg writes

se(β̂1) =

√
V̂ar(β̂1) (23)

he is not actually referring to the standard error, but, rather, its estimate. In the ALR

notation,
√

Var(β̂) is used to indicate the actual standard error (i.e., the population quantity).
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Properties of Least Squares Estimators

Estimated Standard Errors

Frankly, I don’t agree with this notational digression, although I should be clear that many
authors use it. In a more consistent (if somewhat messier) notation, one should use se( ) to
stand for the population quantity and ŝe( ) to stand for the estimated standard error. I suspect
the convention of dispensing with the “hat” in the standard error notation was adopted for
typographical convenience in the “old days” of painstaking mathematical typing.

In any case, remember that when regression textbooks talk about “standard errors,” they are
actually talking about estimated standard errors. Asymptotically, it doesn’t matter, but at
small samples it can.

Ultimately, of course, notation is a matter of personal preference. However, in this case, a
deliberate notational inconsistency has been introduced.
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Comparing Models: The Analysis of Variance Interpreting p-values

Interpreting p-values

As you learned in Psychology 310, p-values are interpreted in such a way that if the
p-value is less than α, then the null hypothesis is rejected at the α significance level.
ALR has an extensive discussion revisiting this topic.
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Comparing Models: The Analysis of Variance Power Calculations

Power Calculation

When the null hypothesis is true, the F -statistic has a central F distribution. When it is false,
and the assumption of fixed X holds, then the F -statistic has a non-central F distribution with
1 and n − 2 degrees of freedom, and a noncentrality parameter λ given by

λ =
β2

1SXX

σ2
(24)

The above equation for λ is not very useful in the context of regression analysis as we normally
think about it.
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Comparing Models: The Analysis of Variance Power Calculations

Power Calculation

However, once λ is computed, the power of a test is determined as follows:

First, calculate a rejection point (critical value) under the assumption that the null
hypothesis is true.
Then calculate the probability that a noncentral F1,n−2,λ exceeds the critical value.

We shall illustrate such a calculation in a homework exercise, but first we develop a more
meaningful formula for λ in terms of the coefficient of determination, defined on the next slide.
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Comparing Models: The Analysis of Variance The Coefficient of Determination R2

The Coefficient of Determination R2

The proportion of total variation accounted for by the regression equation is called the
coefficient of determination, and is denoted by R2. There are a number of formulas for R2. In
general, even in the multivariate case,

R2 =
SSreg

SYY
= 1− RSS

SYY
(25)

R2, in the case of a single predictor, is simply r 2
xy .
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Comparing Models: The Analysis of Variance Revisiting Power Calculation

Revisiting Power Calculation

It is fairly easy to show, in the case of a single predictor, that for a population correlation ρ,

λ = n
ρ2

1− ρ2
(26)

Proof. Substituting some well known identities, (i.e. β1 = ρσy/σx , σ2 = (1− ρ2)σ2
y , and

nσ2
x = SXX), we get

λ =
β2

1SXX

σ2
(27)

=
ρ2(σ2

y/σ
2
x)nσ2

x

(1− ρ2)σ2
y

(28)

= n
ρ2

1− ρ2
(29)

Note in the above that the X scores are considered fixed, and so the population variance of X
is σ2

x = SXX/n.
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Comparing Models: The Analysis of Variance Revisiting Power Calculation

Revisiting Power Calculation

The preceding expression allows one to calculate power in a linear regression in terms of
the population ρ2 value, a much more natural metric for most users than SXX and β2

1 .
However, careful consideration of the typical application of this formula reveals once again
the artificiality of the “fixed X ” scores model that treats the X scores as if they were
fixed and known (in a sense the entire population). In general, the X scores are random
variates just like the Y scores, SXX will vary from sample to sample, the fixed scores
model is not really appropriate, and the power value is an approximation.
In the case of multiple regression, the approximation can be off by a substantial amount,
but it is usually adequate.
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Confidence Intervals and Tests Introduction

Confidence Intervals and Tests
Introduction

In Section 2.6 of ALR, Weisberg introduces several of the classic parametric hypothesis tests
and confidence intervals calculated in connection with simple linear regression.

1 The Intercept β0.
2 The Slope β1.
3 Predicted Values from a New Data Point.
4 Fitted Values (Conditional Mean Estimates) on the Regression Line.
5 Residuals.

We shall now consider each of these in turn, demonstrating calculations as we go.
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Confidence Intervals and Tests The Intercept β0

Confidence Intervals and Tests
The Intercept β0: Simple Confidence Interval

The (estimated) standard error for β0 is se(β0) = σ̂(1/n + x2/SXX)1/2, and a 100(1− α)%
confidence interval is

β̂0 ± t∗ se(β̂0) (30)

where t∗ is a critical value from the t distribution with n − 2 degrees of freedom, i.e.,
t∗ = tn−2,1−α/2.
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Confidence Intervals and Tests The Intercept β0

Confidence Intervals and Tests
The Intercept β0: Simple Hypothesis Testing

The above 100(1− α)% confidence interval may be used directly to test a two-sided
hypothesis about the value of β0. Specifically, to test the null hypothesis that β0 = β∗0 , at the
α significance level, simply observe whether or not the confidence interval excludes β∗0 .

If an actual p-value is required, one can use the test statistic

tn−2 =
β̂0 − β∗0
se(β̂0)

(31)
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Confidence Intervals and Tests The Slope β1

Confidence Intervals and Tests
The Slope β1

The (estimated) standard error of β1 is

se(β̂1) =
σ̂

SXX
(32)

A confidence interval for β1 may be constructed in the standard manner, with endpoints given
by

β̂1 ± t∗ se(β̂1) (33)
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Confidence Intervals and Tests A Predicted Value from a New Data Point

Confidence Intervals and Tests
Two Kinds of Intervals around a Regression Line

One often sees confidence regions plotted in connection with a regression line. There are
actually two distinctly different kinds of plots:

1 A regression line has been calculated from a data set, then a new value x∗ becomes
available, prior to the availability of the associated y∗. What is an appropriate confidence
interval for the predicted value?

2 A regression line involves an (infinite) set of “fitted values” that represent conditional
means for Y |X = x . What is a confidence interval for such a fitted value?
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Confidence Intervals and Tests A Predicted Value from a New Data Point

Confidence Intervals and Tests
A Predicted Value from a New Data Point

The first kind of interval is calculated as follows. The estimated value of y∗ is obtained by
substituting x∗ into the estimated regression line, i.e.,

ỹ∗ = β̂0 + β̂1x∗ (34)

Under the assumptions of fixed predictors regression, the conditional sampling variance of ỹ∗
given x∗ is a function of x∗ itself, i.e.,

Var(ỹ∗|x∗) = σ2 + σ2

(
1

n
+

(x∗ − x)2

SXX

)
(35)

Recalling that SXX = (n − 1)S2
x , we can, after a little reduction, write a somewhat more

revealing version of the formula as

Var(ỹ∗|x∗) = σ2

(
n + 1

n
+

1

n − 1

(
x∗ − x

Sx

)2
)

(36)
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Confidence Intervals and Tests A Predicted Value from a New Data Point

Confidence Intervals and Tests
A Predicted Value from a New Data Point

Since the standard deviation varies as a function of x∗, a simultaneous confidence region plot
will be curved. Here is a formula and notation for the estimated standard error of prediction
for a given x∗:

sepred(ỹ∗|x∗) = σ̂

(
n + 1

n
+

1

n − 1

(
x∗ − x

Sx

)2
)1/2

(37)
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Confidence Intervals and Tests A Predicted Value from a New Data Point

Confidence Intervals and Tests
A Predicted Value from a New Data Point

Weisberg gives an extensive example of calculation of a prediction interval in section 2.8.3
of ALR. This is done in the standard way, i.e., the estimate plus or minus the standard
error times the critical value of t.
He points out that a prediction interval for log(Pressure) can be converted into one for
Pressure by tranforming the endpoints of the former, since the log(x) transformation is
strictly increasing in x .
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Confidence Intervals and Tests A Fitted Value (Conditional Mean)

Confidence Intervals and Tests
A Fitted Value (Conditional Mean)

In some situations one may be interested in obtaining an estimate of E(Y |X = x). For
example, in the heights data, one might estimate the population mean height of all daughters
of mothers with a particular height x∗. This quantity is estimated by the fitted value
ŷ = β0 + β1x∗.
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Confidence Intervals and Tests A Fitted Value (Conditional Mean)

Confidence Intervals and Tests
A Fitted Value (Conditional Mean)

Regardless of whether or not you consider the fitted value itself an “estimate,” you can
estimate it with the quantity ỹ∗ = β̂0 + β̂1x∗. This estimate has an estimated standard error of

sefit(ỹ∗|x∗) = σ̂

(
1

n
+

1

n − 1

(
x∗ − x

Sx

)2
)1/2

(38)
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Confidence Intervals and Tests A Fitted Value (Conditional Mean)

Confidence Intervals and Tests
A Fitted Value (Conditional Mean)

Again, for a single value, a confidence interval for such an estimated conditional mean can be
calculated with the standard approach, e.g.,

ỹ∗ ± t∗ sefit(ỹ∗|x∗) (39)

where t∗ is the 1− α/2 critical value from the t distribution with n − 2 degrees of freedom.
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Confidence Intervals and Tests A Fitted Value (Conditional Mean)

Confidence Intervals and Tests
A Fitted Value (Conditional Mean)

The above confidence interval might be considered appropriate when only one conditional
mean is of interest. On page 36 of ALR, Weisberg discusses using the Scheffe correction to
allow simultaneous computation of all estimated conditional means.

This can be done by substituting (2F ∗)1/2 for t∗ in the above formula. F ∗ is the critical value
from the central F distribution with 2 and n − 2 degrees of freedom. (More generally, for
multiple regression models with p′ predictors including the intercept term, one substitutes
(p′F ∗)1/2, where F ∗ is the critical value from the central F with p′ and n − p′ degrees of
freedom.

The function shown below computes the Scheffe correction by computing the uncorrected
interval and then expanding it by the ratio of the two critical values. This function should
work for multiple regression as well as simple bivariate regression.
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Confidence Intervals and Tests A Fitted Value (Conditional Mean)

Confidence Intervals and Tests
A Fitted Value (Conditional Mean)

> ## Create a function to compute the Scheffe corrected confidence

> ## interval for the regression line

> scheffe.rescaled.ci <- function(model,conf.level,new){

+ ## Get df and number of predictors from model object

+ df <- model$df.residual

+ p <- model$rank

+ alpha <- 1-conf.level

+ ## NOTE Scheffe value uses 1-tailed F critical value

+ scheffe.crit <- sqrt(p*qf(1-alpha,p,df))

+ ci <- predict(model,new,interval="confidence",level=conf.level)

+ ## Create multiplier to expand the width of the ci

+ multiplier <- scheffe.crit/qt(1-alpha/2,df)

+ ## Recompute the ci

+ ci[,2] <- ci[,1] -(ci[,1]-ci[,2])*multiplier

+ ci[,3] <- ci[,1] +(ci[,3]-ci[,1])*multiplier

+ return(ci)

+ }
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Plotting Confidence Intervals

We can plot the prediction intervals and the confidence intervals for fitted values using R.
Note that ALR recommends the Scheffe correction for the latter, but not for the former.
One might ask, “Why?”
Ostensibly, this is because in the former case, we are graphing what the confidence
interval would be if we had observed a value x∗, while in the latter case, we are asking
what the theoretical confidence intervals would be for the entire run of the regression line,
based on the current data.
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Plotting Confidence Intervals

Here is some commented code:

> ##fit the simple regression model

> attach(Heights)

> m1 <- lm(dheight~mheight)

> ##Create a run of 50 points across the x-axis

> new <- data.frame(mheight=seq(55.4,70.8,length=50))

> ##create the confidence intervals

> ## first for the prediction intervals

> pred.w.plim <- predict(m1, new, interval="prediction")

> ## next for the fitted value (conditional mean)

> pred.w.clim <- scheffe.rescaled.ci(m1,0.95,new)

> #Then we use matplot --

> # cbind takes all 3 columns of pred.w.clim

> # and last two of pred.w.plim

> matplot(new$mheight,cbind(pred.w.clim, pred.w.plim[,-1]),

+ col=c("black","red","red","blue","blue"),bty="l",

+ lty=c(2,1,1,1,1), type="l", ylab="Daughter's Height",

+ xlab="Mother's Height")

> legend("bottomright", c("Prediction Interval", "Fitted Value C.I."),

+ lty = c(1, 1),col=c("blue","red"))
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Plotting Confidence Intervals

Here is the plot:
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Weisberg makes the following points about residual plots.

Plots of residuals versus other quantities are used to find failures of assumptions.
The most common plot, especially useful in simple regression, is the plot of residuals
versus the fitted values.
A plot with a slope of zero and even scatter indicates assumptions are realistic.
Curvature might indicate that the fitted mean function is inappropriate.
Residuals that seem to increase or decrease in average magnitude with the fitted values
might indicate nonconstant residual variance.
A few relatively large residuals may be indicative of outliers, cases for which the model is
somehow inappropriate.
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Residual Plot for the Forbes Data

Here is the code for the Forbes data residual plot. Note the code for labeling the 12th case,
which is an outlier. Weisberg discusses the effect of dropping the outlier and reanalyzing the
data in section 2.8 of ALR4.

> m1 <- lm(LogPressure~BoilingPoint)

> plot(predict(m1),residuals(m1),

+ xlab="Fitted values", ylab="Residuals")

> text(predict(m1)[12],residuals(m1)[12],labels="12",adj=-1)

> abline(0,0)
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