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Introduction

In this module, we discuss an extremely important technique in statistics — Linear
Regression.
Linear regression is very closely related to correlation, and is extremely useful in a wide
range of areas.
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Introduction

We begin by recalling our data relating height to shoe size and drawing the scatterplot for
the male data.

> all.heights <- read.csv("shoesize.csv")

> male.data <- all.heights[all.heights$Gender=="M",] #Select males

> attach(male.data)#Make Variables Available
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Introduction

> # Draw scatterplot

> plot(Size,Height,xlab="Shoe Size",ylab="Height in Inches")

> cor(Size,Height)

[1] 0.7677094
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The correlation is an impressive 0.77. But how can we characterize the relationship
between shoe size and height?
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Fitting a Straight Line Introduction

Fitting a Straight Line
Introduction

If data are scattered around a straight line, then the relationship between the two
variables can be thought of as being represented by that straight line, with some “noise”
or error thrown in.
We know that the correlation coefficient is a measure of how well the points will fit a
straight line. But which straight line is best?
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Fitting a Straight Line Introduction

Fitting a Straight Line
Introduction

The key to understanding this is to realize the following:
1 Any straight line can be characterized by just two parameters, a slope and an intercept, and

the equation for the straight line is Y = β1X + β0, where β1 is the slope and β0 is the
intercept.

2 Any point can be characterized relative to a particular line in terms of two quantities: (a)
where its X falls on a line, and (b) how far its Y is from the line in the vertical direction.

Let’s examine each of these preceding points.
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line

A key point is that the slope is multiplied by X , and so any change in X is multiplied by
the slope and passed on to Y . Consequently, the slope represents “the rise over the run,”
the amount by which Y increases for each unit increase in X .
The intercept is, of course, the value of Y when X = 0.
So if you have the slope and intercept, you have the line.
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line

Suppose we draw a line — any line — in a plane.
Then consider a point — any point — with respect to that line.
What can we say? Let’s use a concrete example.
Suppose I draw the straight line whose equation is Y = 1.04X + 0.2 in a plane, and then
plot the point (2, 3) by going over to 2 on the X -axis, then up to 3 on the Y -axis.
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line

Now suppose I were to try to use the straight line to predict the Y value of the point only
from a knowledge of the X value of that point.
The X value of the point is 2. If I substitute 2 for X in the formula Y = 1.04X + 0.2, I
get Y = 2.28.
This value lies on the line, directly above X . I’ll draw that point on the scatterplot in blue.
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line

The Y value for the blue point is called the “predicted value of Y ,” and is denoted Ŷ .
Unless the actual point falls on the line, there will be some error in this prediction. The
error is the discrepancy in the vertical direction from the line to the point.
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Fitting a Straight Line Characteristics of a Straight Line

Fitting a Straight Line
Characteristics of a Straight Line
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Fitting a Straight Line Regression Notation

Fitting a Straight Line
Regression Notation

Now, let’s generalize!
We have just shown that, for any point with coordinates (Xi ,Yi ), relative to any line
Y = β1X + β0, I may write

Ŷi = β1Xi + β0 (1)

and
Yi = Ŷ + Ei (2)

But we are not looking for any line. We are looking for the best line. And we have many
points, not just one.
And, by the way, what is the best line, and how do we find it?
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Fitting a Straight Line The Least Squares Solution

Fitting a Straight Line
The Least Squares Solution

It turns out, there are many possible ways of characterizing how well a line fits a set of
points.
However, one approach seems quite reasonable, and has many absolutely beautiful
mathematical properties.
This is the least squares criterion and the least squares solution for β1 and β0.
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Fitting a Straight Line The Least Squares Solution

Fitting a Straight Line
The Least Squares Solution

The least squares criterion states,

The best-fitting line for a set of points is that line
which minimizes the sum of squares of the Ei for
the entire set of points.
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Fitting a Straight Line The Least Squares Solution

Fitting a Straight Line
The Least Squares Solution

Remember, the data points are there, plotted in the plane, nailed down, as it were. The
only thing free to vary is the line, and it is characterized by just two parameters, the slope
and intercept.
For any slope β1 and intercept β0 I might choose, I can compute the sum of squared
errors. And for any data set, the sum of squared errors is uniquely defined by that slope
and intercept.
The sum of squared errors is thus a function of β1 and β0.
What we really have is a problem in minimizing a function of two unknowns.
This is a routine problem in first-year calculus. We won’t go through the proof of the
least squares solution, we’ll simply give you the result.
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Fitting a Straight Line The Least Squares Solution

Fitting a Straight Line
The Least Squares Solution

The solution to the least squares criterion is as follows

β1 = ry ,x
sy
sx

=
sy ,x
s2x

(3)

and
β0 = Y • − β1X • (4)

Note: If X and Y are both in Z score form, then β1 = ry ,x and β0 = 0.
Thus, once we remove the metric from the numbers, the very intimate connection
between correlation and regression is revealed!
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Predicting Height from Shoe Size Creating a Fit Object

Predicting Height from Shoe Size
Creating a Fit Object

We could easily construct the slope and intercept of our regression line from summary
statistics.
But R actually has a facility to perform the entire analysis very quickly and automatically.
You begin by producing a linear model fit object with the following syntax.

> fit.object <- lm(Height ~ Size)

R is an object oriented language. That is, objects can contain data and when general
functions are applied to an object, the object “knows what to do.”
We’ll demonstrate on the next slide.
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Predicting Height from Shoe Size Examining Summary Statistics

Predicting Height from Shoe Size
Examining Summary Statistics

R has a generic function called summary. Look what happens when we apply it to our fit
object.

> summary(fit.object)

Call:

lm(formula = Height ~ Size)

Residuals:

Min 1Q Median 3Q Max

-7.2892 -1.1119 0.0655 1.3560 5.8240

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 52.5460 1.0556 49.78 <2e-16 ***

Size 1.6453 0.0928 17.73 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.023 on 219 degrees of freedom

Multiple R-squared: 0.5894, Adjusted R-squared: 0.5875

F-statistic: 314.3 on 1 and 219 DF, p-value: < 2.2e-16
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Predicting Height from Shoe Size Examining Summary Statistics

Predicting Height from Shoe Size
Examining Summary Statistics

The coefficients for the intercept and slope are perhaps the most important part of the
output. Here we see that the slope of the line is 1.6453 and the intercept is 52.5460.
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Predicting Height from Shoe Size Examining Summary Statistics

Predicting Height from Shoe Size
Examining Summary Statistics

Along with the estimates themselves, the program provides estimated standard errors of
the coefficients, along with t statistics for testing the hypothesis that the coefficient is
zero.
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Predicting Height from Shoe Size Examining Summary Statistics

Predicting Height from Shoe Size
Examining Summary Statistics

The program prints the R2 value, also known as the coefficient of determination. When
there is only one predictor, as in this case, the R2 value is just r2x ,y , the square of the
correlation between height and shoe size.
The “adjusted R2” value is an approximately unbiased estimator. With only one
predictor, this can essentially be ignored, but with many predictors, it can be much lower
than the standard R2 estimate.
The F -statistic tests that R2 = 0
When there is only one predictor, it is the square of the t-statistic for testing that rx ,y = 0.
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Predicting Height from Shoe Size Examining Summary Statistics

Predicting Height from Shoe Size
Examining Summary Statistics
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Predicting Height from Shoe Size Drawing the Regression Line

Predicting Height from Shoe Size
Drawing the Regression Line

Now we draw the scatterplot with the best-fitting straight line.
Notice how we draw the scatterplot first with the plot command, then draw the
regression line in red with the abline command.

> # draw scatterplot

> plot(Size,Height)

> # draw regression line in red

> abline(fit.object,col="red")
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Predicting Height from Shoe Size Drawing the Regression Line

Predicting Height from Shoe Size
Drawing the Regression Line
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Predicting Height from Shoe Size Using the Regression Line

Predicting Height from Shoe Size
Computing a Predicted Value

We can now use the regression line to estimate a male student’s height from his shoe size.
Suppose a student’s shoe size is 13. What is his predicted height?

Ŷ = bX + a = (1.6453)(13) + 52.5460 = 73.9349

The predicted height is a bit less than 6 feet 2 inches.
Of course, we know that not every student who has a size 13 show will have a height of
73.93. Some will be taller than that, some will be shorter. Is there something more we
can say?
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Predicting Height from Shoe Size Using the Regression Line

Predicting Height from Shoe Size
Thinking about Residuals

The predicted value Ŷ = 73.93 actually represents the average height of people with a
shoe size of 13.
According to the most commonly used linear regression model, people with a shoe size of
13 actually have a normal distribution with a mean of 73.93, and a standard deviation
called the “standard error of estimate.”
This quantity goes by several names, and in R output is called the “residual standard
error.”
An estimate of this quantity is included in the R regression output produced by the
summary function.
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Predicting Height from Shoe Size Using the Regression Line

Predicting Height from Shoe Size
Thinking about Residuals
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Predicting Height from Shoe Size Using the Regression Line

Predicting Height from Shoe Size
Thinking about Residuals

In the population, the standard error of estimate is calculated from the following formula

σe =
√

1 − ρ2x ,y σy (5)

In the sample, we estimate the standard error of estimate with the following formula

se =

√
n − 1

n − 2

√
1 − r2x ,y sy (6)
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Partial Correlation An Example

Partial Correlation
An Example

Residuals can be thought of as “The part of Y that is left over after that which can be
predicted from X is partialled out.”
This notion has led to the concept of partial correlation.
Let’s introduce this notion in connection with an example.
Suppose we gathered data on house fires in the Nashville area over the past month. We
have data on two variables — damage done by the fire, in thousands of dollars (Damage)
and the number of fire trucks sent to the fire by the fire department (Trucks).
Here are the data for the last 10 fires.
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Partial Correlation An Example

Partial Correlation
An Example

Trucks Damage

1 0 8

2 0 9

3 1 33

4 1 38

5 1 27

6 2 70

7 2 94

8 2 83

9 3 133

10 3 135
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Partial Correlation An Example

Partial Correlation
An Example

Plotting the regression line, we see that there is indeed, a strong linear relationship
between the number of fire trucks sent to a fire, and the damage done by the fire.

> plot(Trucks,Damage)

> abline(lm(Damage ~ Trucks),col="red")
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Partial Correlation An Example

Partial Correlation
An Example
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Partial Correlation An Example

Partial Correlation
An Example

The correlation between Trucks and Damage is 0.9779.
Does this mean that the damage done by fire can be reduced by sending fewer trucks?
Of course not. It turns out that the house fire records include another piece of
information. Based on a complex rating system, each housefire has a rating based on the
size of the conflagration. These ratings are in a variable called FireSize.
On purely substantive and logical grounds, we might suspect that rather than fire trucks
causing the damage, that this third variable, FireSize, causes both more damage to be
done and more fire trucks to be sent.
How can we investigate this notion statistically?
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Partial Correlation An Example

Partial Correlation
An Example

Suppose we predict Trucks from FireSize. The residuals represent that part of Trucks
that isn’t attributable to Firesize. Call these residuals ETrucks•FireSize.
Then suppose we predict Damage from Firesize. The residuals represent that part of
Damage that cannot be predicted from FireSize. Call these residuals EDamage•Firesize.
The correlation between these two residual variables is called the partial correlation
between Trucks and Damage with FireSize partialled out, and is denoted
rTrucks,Damage•FireSize.
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Partial Correlation An Example

Partial Correlation
An Example

There are several ways we can compute this partial correlation.
One way is to compute the two residual variables discussed above, and then compute the
correlation between them.

> fit.1 <- lm(Trucks ~ FireSize)

> fit.2 <- lm(Damage ~ FireSize)

> E.1 <- residuals(fit.1)

> E.2 <- residuals(fit.2)

> plot(E.1,E.2)

> cor(E.1,E.2)

[1] -0.2162731
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Partial Correlation An Example

Partial Correlation
An Example

Another way is to use the textbook formula

rx ,y•z =
rx ,y − rx ,z ry ,z√

(1 − r2x ,z)(1 − r2x ,z)
(7)

> r.xy <- cor(Trucks,Damage)

> r.xz <- cor(Trucks,FireSize)

> r.yz <- cor(Damage,FireSize)

> r.xy.dot.z <- (r.xy - r.xz * r.yz)/

+ sqrt((1-r.xz^2)*(1-r.yz^2))

> r.xy.dot.z

[1] -0.2162731
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Partial Correlation
An Example

The partial correlation is −0.216.
Once size of fire is accounted for, there is a negative correlation between number of fire
trucks sent to the fire and damage done by the fire.
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