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Introduction

Introduction

There are two prototypical situations in multivariate analysis that are, in a
sense, different sides of the same coin. Suppose we have identifiable
groups, and they may (or may not) differ in their means (and possibly in
their covariance structure) on one or more response measures.

How can we test whether the groups are significantly different?

If the groups are different, how can we construct a rule that allows us
to accurately assign an individual to one of several groups, depending
on their scores on the response measures?

In this module, we will deal with the second problem, examining, in
detail, a method known as discriminant analysis.

However, the first problem, related to a technique known as MANOVA
(Multivariate Analysis of Variance) is closely related to the first.
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Classification in One Dimension

Classification in One Dimension

There are many situations in which we measure a response variable on
a group of people, objects, or situations, and then try to sort these
into one or more groups depending on their score on that variable.

Some examples? (C.P.)
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Classification in One Dimension

Classification in One Dimension – Some Examples

Your response variable is the color of a test strip. You try to sort
individuals into:

1 Pregnant

2 Non-Pregnant

Your response variable is a brief sensation of change of illumination in
a very dark backround. You try to decide whether a very dim signal
light is

1 Present

2 Not Present

You have individuals who are either male or female, and you have
their heights. You try to devise a rule that will, with the highest
possible degree of accuracy, decide only on the basis of height
whether a person is:

1 Male

2 Female
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Classification in One Dimension A Simple Special Case

A Simple Special Case

As a simple special case, suppose we consider the whole population of
men and women, and imagine that we knew that both populations
are normally distributed with standard deviations of 2.5, but men
have a mean of 70, women of 65.

Suppose that men and women occur with equal probability, and we
randomly sample a person from the population. What is an optimal
decision rule for deciding whether the person is male or female, given
only the information about the person’s height?
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Classification in One Dimension A Simple Special Case

A Simple Special Case

The rule we choose depends on what is, for us, optimal.

For example, in this situation, there are two kinds of misclassification
errors we can make:

1 We can assign a person who is really Male to the Female group.

2 We can assign a person who is really Female to the Male group.

If these two types of errors have different costs, then this might effect
our decision rule!
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Classification in One Dimension A Simple Special Case

A Simple Special Case

Normal Distributions, Means = 65,70  SD = 2.5

x

52.0 54.5 57.0 59.5 62.0 64.5 67.0 69.5 72.0 74.5 77.0 79.5

x
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Classification in One Dimension A Simple Special Case

Choosing a Decision Point

Suppose we choose a decision point based on height. If a person’s
height is larger than a particular value, we decide they are male,
otherwise we decide they are female.

Where is the best place to put our decision point?

Let’s begin by putting our decision point exactly halfway between the
means of the two distributions.

I’ve colored in areas under the normal curves corresponding to the
two types of misclassification errors.

The blue area represents the probability of erroneously classifying a
female as a male, the red area the probability of erroneously
classifying a male as a female.
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Classification in One Dimension A Simple Special Case

Choosing a Decision Point
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Classification in One Dimension A Simple Special Case

Choosing a Decision Point

In this case, it is fairly easy to see that moving the decision point
slightly to the right or to the left will increase the overall probability
of an error.

So, if males and females are equally represented in the population,
this is the optimal decision point.

However if males and females are not equally represented, or if the
costs of the two types of misclassification are different, then the point
halfway between the two means would not necessarily be optimal.
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Classification in Two Dimensions

Classification in Two Dimensions

As an extension of our previous simple example, suppose we have two
measurements on two or more distinct groups.

For example, suppose we have heights and weights of a group of
people, and we try to predict, on the basis of those data, whether the
individuals are male or female.

For simplicity, let’s assume that heights and weights have a bivariate
normal distribution for both men and women. For women, the mean
vector is µ1 = (65, 135)′, and for men it is µ2 = (70, 150)′.
Furthermore, assume that both groups have a common covariance
matrix given by

Σ =

[
6.25 43.75

43.75 625.00

]
On the next slide, we plot a simulated data set representing 50
observations at random from both groups.
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Classification in Two Dimensions

Classification in Two Dimensions

We’ll create some data and plot it on the next slide. Here are the
commands to create the data.

> set.seed(12345)

> mu1 <- c(65,135)

> mu2 <- c(70,150)

> Sigma <- matrix(c(6.25,.7*2.5*25,.7*2.5*25,625),2,2)

> g1 <- mvrnorm(50,mu1,Sigma)

> g2 <- mvrnorm(50,mu2,Sigma)

> group <- rbind(matrix(rep(1,50),50,1),matrix(rep(2,50),50,1))

> data <- rbind(g1,g2)

> data <- cbind(group,data)

> colnames(data) <- c("group","height","weight")

> height.data <- data.frame(data)

> attach(height.data)
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Classification in Two Dimensions

Classification in Two Dimensions
> plot(height[1:50],weight[1:50],pch=1,col="red",xlab="Height",ylab="Weight")

> points(height[51:100],weight[51:100],pch=2,col="blue")

> legend("bottomright",c("female","male"),pch=c(1,2),col = c("red","blue"))
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Classification in Two Dimensions

Classification in Two Dimensions

We can see that the points tend to occupy different regions of the
two-dimensional data space.

Linear discriminant analysis would attempt to find a straight line that
reliably separates the two groups.

However, since the two groups overlap, it is not possible, in the long
run, to obtain perfect accuracy, any more than it was in one
dimension.

In the long run, where should we draw our “line of demarcation”?
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Classification in Two Dimensions

Classification in Two Dimensions

Recall that, in the case of one variable, we put a line of demarcation
perpendicular to a line connecting the two group means, at a point
halfway between them.

In two-group discriminant analysis, we do the same thing, except that
it is now much more complicated.

First, we need to find a direction in two dimensional space along which
the two groups differ maximally.

Next, we compute the mean value, along this direction, for each of the
two groups.

We draw a connecting line, then draw a line perpendicular to its
midpoint.

Any observation on the side of the line closer to the mean of group 1 is
classified as belonging to group 1, otherwise it is classified as belonging
to group 2.

But this raises the key question — how do we find the direction in
two dimensional space that maximally separates the two groups?
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Classification in Two Dimensions

A Caveat

There are a number of different ways of arriving at formulae that
produce essentially the same result in discriminant analysis.

Consequently, different computer programs or books may give
different formulae that yield different numerical values for some
quantities.

This can be very confusing.
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Classification in Two Dimensions The Two-Group Linear Discriminant Function

The Two-Group Linear Discriminant Function

Suppose we have two groups to be classified, based on a linear
function of the classifying variables in x .

Call the discriminant function L = a′x .

We seek an a that produces maximally different mean scores for
individuals in the two groups.

It may be shown (see, e.g., Timm,Applied Multivariate Analysis,
Equation 3.9.10) that the set of discriminant weights as that
accomplishes maximal separation is given by

as = S−1(x1 − x2) (1)

where S is the pooled unbiased estimator of the common covariance
matrix Σ.
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Classification in Two Dimensions The Two-Group Linear Discriminant Function

The Two-Group Linear Discriminant Function

Using as as defined above, the mean difference in discriminant scores
is

L1 − L2 = a′sx1 − a′sx2

= a′s(x1 − x2)

= (x1 − x2)′S−1(x1 − x2) (2)

The above expression is known as Mahalanobis’ D2, and is a measure
of distance between two groups of scores.

When we get to MANOVA, we shall see that this statistic is closely
related to Hotelling’s T 2 statistic used for testing the equality of two
mean vectors.
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

The linear weights for the discriminant function define the direction in
two-dimensional space that most effectively discriminates between the
two groups.

> centroid.1 <- c(mean(height[group==1]),mean(weight[group==1]))

> centroid.2 <- c(mean(height[group==2]),mean(weight[group==2]))

> xs <- c(centroid.1[1],centroid.2[1])

> ys <- c(centroid.1[2],centroid.2[2])

> mid.point <- (centroid.1 + centroid.2)/2

> mid.point <- matrix(mid.point,2,1)

> data.1 <- cbind(height[group==1],weight[group==1])

> data.2 <- cbind(height[group==2],weight[group==2])

> S <- (var(data.1)+var(data.2))/2

> xbar.1 <- matrix(centroid.1,2,1)

> xbar.2 <- matrix(centroid.2,2,1)

> a <- solve(S) %*% (xbar.1 - xbar.2)

> a

[,1]

[1,] -1.29126337

[2,] 0.07880716
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

We can use the linear weights in as to compute discriminant scores
for each individual.

If the ith individual has score vector xi , then that individual’s
discriminant score is Li = a′sxi

If we plot the discriminant weights as a line in 2-dimensional space,
the discriminant scores are proportional to the projection of an
individual’s data point onto that line.

This is not simple to visualize in this case — because height and
weight are plotted with axes having different numerical scales, lines
that are perpendicular do not appear to be at right angles on the plot.

So I’ll work at it in reverse.
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

Where do we draw the line? The rule for assigning individuals to
groups is to

Compute the discriminant score.

If an individual discriminant score is higher than the discriminant score
computed at a cutoff point halfway between the two group centroids
(i.e., at an overall weighted average score), then assign the individual
to group 1, otherwise assign to group 2.

The cutoff point is thus c = a′s(x1 + x2)/2, which can also be written
as c = 1

2 (x1 + x2)′S−1(x1 − x2).

> cutoff <- t(a) %*% mid.point

> cutoff

[,1]

[1,] -75.47808
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

The cutoff line for deciding whether to classify an observation as
group 1 or group 2 is at the point a1x1 + a2x2 = c .

This may be re-expressed in the classic form of a linear equation as

x2 = −(a1/a2)x1 + c/a2 (3)

that is, a straight line with a slope of −(a1/a2) and an intercept of
c/a2.
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function
> plot(height[1:50],weight[1:50],pch=1,col="red",xlab="Height",ylab="Weight")

> points(height[51:100],weight[51:100],pch=2,col="blue")

> legend("bottomright",c("female","male"),pch=c(1,2),col = c("red","blue"))

> abline(cutoff/a[2],-(a[1]/a[2]))
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

The discriminant function is evaluated by projecting points onto the
discriminant function line, which has a slope of a2/a1, and an
intercept of 0. This line is not visible in the current plot, but we can
make it visible by moving it upwards, so that it intersects with the
midpoint between the two group centroids.

It is convenient to use the point-slope function. I’ve written this
function to plot a straight line that has a given slope and intersects
with a given point.

> point.slope.line <- function(point,slope,col="black",lty=1)

+ {
+ x.0 <- point[1]

+ y.0 <- point[2]

+ intercept <- y.0 - slope*x.0

+ abline(intercept,slope,lty=lty,col=col)

+ }
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function
> plot(height[1:50],weight[1:50],pch=1,col="red",xlab="Height",ylab="Weight")

> points(height[51:100],weight[51:100],pch=2,col="blue")

> legend("bottomright",c("female","male"),pch=c(1,2),col = c("red","blue"))

> abline(cutoff/a[2],-(a[1]/a[2]))

> points(centroid.1[1],centroid.1[2],pch=19,cex=2,col="red")

> points(centroid.2[1],centroid.2[2],pch=17,cex=2,col="blue")

> xs <- c(centroid.1[1],centroid.2[1])

> ys <- c(centroid.1[2],centroid.2[2])

> lines(xs,ys)

> points(mid.point[1],mid.point[2],pch=19,cex=2,col="black")

> point.slope.line(mid.point,a[2]/a[1],lty=2,col="red")
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> discriminant.scores <- a[1]*height + a[2]*weight

> W.hat <- discriminant.scores - cutoff
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

The red dotted line is the discriminant function line. The black solid
line is the “line of demarcation” that also shows the correct direction
to orthogonally project points onto the discriminant function line.

The two lines are actually perpendicular, but do not appear so in the
plot because the numerical scales in the plot are not the same.
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Classification in Two Dimensions Plotting the Two-Group Discriminant Function

Plotting the Two-Group Discriminant Function

Using the identify function in R, we can identify points and also
compute their discriminant functions.

For example, point number 65 lies just above the midpoint, and just
to the left of the demarcation line. Point number 32 lies just to the
right of the demarcation line. To compute the amount by which the
discriminant score is above or below the cutoff, I subtracted the cutoff
value to generate a “decision score.”

Ŵi = a1heighti + a2weighti − c

= a1heighti + a2weighti −
1

2
(x1 + x2)′S−1(x1 − x2)

Using the decision scores, we classify an observation in group 1 if the
decision score Ŵi is greater than 0.

> W.hat[65]

[1] -5.349976

> W.hat[32]

[1] 3.926848
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Classification in Two Dimensions Unequal Probabilities of Group Membership

Unequal Prior Probabilities

Suppose that we somehow knew that groups 1 and 2 are unequally
represented in the population with probabilities Pr(1) and Pr(2),
respectively.

Should this affect our decision rule?
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Classification in Two Dimensions Unequal Probabilities of Group Membership

Unequal Prior Probabilities

Anderson’s classification rule that minimizes the total probability of
misclassification (TPM) uses the decision score to assign a person to
group 1 if the decision score exceeds ln(Pr(2)/Pr(1)), or,
alternatively, if

W ∗ = Ŵ − ln(Pr(2)/Pr(1)) > 0

.

Suppose we knew that, in our classification system, males were
actually 9 times as likely to occur as females.

Can you diagram the new decision line?
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Classification in Two Dimensions Unequal Probabilities of Group Membership
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Classification in Two Dimensions Unequal Costs

Unequal Costs

Suppose the costs of misclassification are unequal, and we wish to
minimize the overall cost. A classification rule that minimizes the
expected cost uses the decision score to assign a person to group 1 if
the decision score exceeds log[(C (1|2) Pr(2))/(C (2|1) Pr(1))], or,
alternatively, if

W ∗∗ = Ŵ − log[(C (1|2) Pr(2))/(C (2|1) Pr(1))] > 0

.

Suppose we knew that, in our classification system, males and females
were equally likely, but the cost of an error for misclassifying a male
as a female is twice as great as the cost of an error for misclassifying
a female as a male.

Can you diagram the new decision line?
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More than Two Groups Generalizing the Classification Score Approach

More than Two Groups

Suppose you have k > 2 groups, and wish to discriminate between
them.

In this case, Anderson (1984, Chapter 6) has shown that the Bayes
rule for classifying an observation is based on the same discriminant
function defined previously, except now a pairwise function Wij is
computed for all pairs of groups.

The classification rule becomes the following: Assign observation
vector x to population i if Wi ,j > 0∀j 6= i .

It should be noted that Wji = −Wij , and that any k − 1 linearly
independent Wij form a basis for the complete set of statistics if
p ≥ (k − 1). If p < (k − 1), then the space of the Wij will have rank
p, and the classification rule can be specified in terms of p scores.

To compensate for unequal prior probabilities and/or unequal costs,
we utilize the same correction factors for each Wij that were
described for the two-group case.
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More than Two Groups Generalizing the Classification Score Approach

More than Two Groups

Consider the case of 3 groups.

The discriminant functions are:

W12 = x ′S−1(x1 − x2)− 1

2
(x1 + x2)′S−1(x1 − x2)

W13 = x ′S−1(x1 − x3)− 1

2
(x1 + x3)′S−1(x1 − x3) (4)

W23 = x ′S−1(x2 − x3)− 1

2
(x2 + x3)′S−1(x2 − x3)

Note that W23 = W13 −W12. Because of this linear redundancy, we
can devise a decision rule using only W12 and W13.
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More than Two Groups Generalizing the Classification Score Approach

More than Two Groups

The classification rule is as follows: Classify x as from

Population 1 if W12 > 0 and W13 > 0.

Population 2 if W12 < 0 (i.e.,W21 > 0) and W13 >W12 (i.e,
W23 = W13 −W12 > 0).

Population 3 if W13 < 0 (i.e., W31 > 0) and W13 <W12 (i.e,
W32 = W12 −W13 > 0).
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More than Two Groups Generalizing the Classification Score Approach

More than Two Groups
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More than Two Groups An Alternate Approach: Canonical Discriminant Functions

Canonical Discriminant Functions

With two groups, an alternative way of computing the (single)
classification function is the eigenvector of the matrix B−1A, where
B and A are multivariate (MANOVA) analogs of sum of squares
within and sum of squares between computed in ANOVA.

Before pursuing this approach, we digress to obtain background on
the meaning of these two matrices, and how they relate to ANOVA
and MANOVA.

This background is in the lecture notes on ANOVA and MANOVA
and the general linear model.

After completing these notes, we will resume on the next slide.
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More than Two Groups An Alternate Approach: Canonical Discriminant Functions

Canonical Discriminant Functions

Let V be the eigenvectors corresponding to the meaningful
eigenvalues of B−1A.

Let W = B/(N − q) be the pooled estimate of the within-groups
covariance matrix.

The “raw” discriminant weights a are normalized so that v ′Wv = 1
for any column of V . That is, ai = vi/

√
(v ′i Wvi .

Commercial programs print “standardized” weights as an aid to
interpretation. Over the years, there has been substantial controversy
over the proper method to standardize the weights.

In SPSS and Stata, the values in a currently are standardized by
multiplying them by the variable standard deviations computed from
W . That is, as = (diag (W ))1/2a.
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More than Two Groups An Alternate Approach: Canonical Discriminant Functions

Eigenvalues and Canonical Correlations

The eigenvalues λi of the matrix BA−1 are related to the canonical
correlation between the set of group indicator variables and the
variables used to discriminate between the groups by the relationship

r2
i =

λi
1 + λi

(5)

So, for example, if the first eigenvalue is 1, then the corresponding
squared canonical correlation is 1/2, and the canonical correlation is
.7071.
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More than Two Groups Tests of Significance

Wilks’ Λ

There are a number of tests of significance in discriminant analysis
and MANOVA.

A primary test statistic that is a monotone function of the likelihood
ratio statistic is Wilks’ Λ, given by

Λ =
|B|
|A + B|

=
1

|B−1A + I |
(6)

The determinant of a covariance matrix is sometimes referred to as
the generalized variance, because it is equal to the square of the area
(or volume) of an N-dimensional parallelogram with sides equal to the
standard deviations of the variables.

This explains why |Σ|−1/2 appears as a standardizing constant in the
multivariate normal density.

Under the assumption of multivariate normality and equality of
covariance matrices, the distribution of Λ is known.
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More than Two Groups Tests of Significance

Wilks’ Λ

Since the determinant of a matrix is the product of its s nonzero
eigenvalues, we have, from Equation 6:

Λ =
s∏

i=1

1

1 + λi
(7)

We are interested in which, if any, of the s dimensions are significant.
In the context of discriminant functions, Wilks’ Λ is more useful than
the other three MANOVA test statistics, because it can be used on a
subset of eigenvalues, as we see shortly.
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More than Two Groups Tests of Significance

Hotelling Trace Criterion

This criterion is
τ = Tr(B−1A) (8)
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More than Two Groups Tests of Significance

Roy’s Largest Root Criterion

This criterion is a function of the largest eigenvalue λ1 of
(B + A)−1A.

The criterion is

θ =
1

1 + λ1
(9)
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More than Two Groups Tests of Significance

Pillai-Bartlett Trace Criterion

This criterion uses the eigenvalues λi of (B + A)−1A

s∑
i=1

λi
1 + λi

(10)
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More than Two Groups Tests of Significance

Hotelling Trace Criterion

This criterion is
τ = Tr(B−1A) (11)
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More than Two Groups Tests of Significance

Comparing the Criteria

If the null hypothesis of equal mean vectors is true, all 4 criteria have
the same rejection rate.

On the other hand, if the null hypothesis is false, there is no one
uniformly most powerful test. Power for any procedure depends on
how the mean vectors are aligned in multidimensional space.

For example, if the mean vectors are in a straight line in
multidimensional space, then they can be maximally separated along
a single dimension, and Roy’s greatest root criterion will be most
powerful.

On the other hand, according to Rencher (Methods of Multivariate
Analysis, 2nd Edition), 2002, p. 177), when the pattern of means is
relatively diffuse in multidimensional space, Roy’s criterion is least
powerful, the Pillai-Bartlett trace criterion and Wilks’ Λ the most
powerful.

Wilks’ Λ has the very substantial advantage of lending itself readily to
sequential tests.

In general, the criteria tend in practice to produce highly similar
results for most data.

James H. Steiger (Vanderbilt University) 46 / 54



Canonical Dimensions in Discriminant Analysis

Canonical Dimensions in Discriminant Analysis

If there are more than two groups, more than one classification
function will be available.

The eigenvectors of B−1A define the dimensions that maximally
separate between the groups.

In general, there will be s = min(p, k − 1) canonical discriminant
functions, where k is the number of groups and p the number of
variables.

A well-known example is Rencher’s (2002, p. 279) football player
data.
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Canonical Dimensions in Discriminant Analysis

Canonical Dimensions in Discriminant Analysis

The data in Rencher’s Table 8.3 were collected by G. R. Bryce and R.
M. Barker (Brigham Young University) as part of a preliminary study
of a possible link between football helmet design and neck injuries.

Six head measurements were made on each subject. There were 30
subjects in each of three groups: high school football players (group
1), college football players (group 2), and nonfootball players (group
3).

The six variables are

1 WDIM = head width at widest dimension,

2 CIRCUM = head circumference,

3 FBEYE = front-to-back measurement at eye level,

4 EYEHD = eye-to-top-of-head measurement,

5 EARHD = ear-to-top-of-head measurement,

6 JAW = jaw width.
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The following code sets up the data for a standard analysis on the
dimensions.

> library(car)

> library(MASS)

> source(

+ "http://www.statpower.net/R312/Steiger R Library Functions.txt")

> fb.data <- read.table(

+ "http://www.statpower.net/R312/football.txt",header=T,sep=",")

> ## Analyze FB data

> ## ##################################

> ## Create x,D,H,and Group matrices

> #####################################

> x <- as.matrix(fb.data[,2:7])

> Group <- as.matrix(fb.data[,1:1])

> D <- Make.D(Group)

> H <- Make.H(Group)
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Here is the plot of the scores.

> Plot.Discriminant.Scores(x,D,H,Group)
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Here is the table of statistical analyses.

> print(Canonical.Table(x,D,H))

Fcn Eigen Prop CanCorr Lambda F-Stat df1 df2

[1,] 1 1.9178 0.943 0.8107 0.3071 10.9941 12 164

[2,] 2 0.1159 0.057 0.3223 0.8961 1.9245 5 83

prob

[1,] 0.0000

[2,] 0.0989

The λi are the respective eigenvalues of B−1A, and the squared
canonical correlation between the scores on a dimension and the set
of dummy variables representing the groups is given by

r2
i =

λi
1 + λi

A test of significance is given for each dimension, as well as a
proportion of the total of the eigenvalues.

In this case, we find that the first dimension separates the groups very
well, but the second canonical dimension is of limited use.
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What are the dimensions? The best way of evaluating and naming
the dimensions is to examine the standardized discriminant weights.

Below, we see that two of the variables are essentially unrepresented
in the first canonical discriminant function

This brings up the question of which variables actually contribute
“significantly” to discrimination between the groups, which leads
naturally to the topic of stepwise discriminant analysis.

> print(Standardized.Discriminant.Weights(x,D,H))

[,1] [,2]

WDIM 0.620641211 -0.9205833819

CIRCUM -0.006471485 0.0009114308

FBEYE -0.004758090 0.0211450008

EYEHD -0.718812268 -0.5997882273

EARHD -0.396511561 0.3018196450

JAW -0.507721826 0.9368744941
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Wilks’ Λ lends itself to stepwise evaluation of variables in discriminant
analysis.

The partial Λ for evaluating the contribution of a variable (or set of
variables) x over and above a set y is given by

Λx |y =
Λx ,y

Λy

An F -statistic is available for analyzing the statistical significance of a
partial Λ, and can be used to evaluate whether a variable contributes
significantly to group discrimination.

Note, of course, that as in any stepwise procedure, this approach is
subject to abuse and should ideally be used with caution.

However, in some cases, one enters the analysis with a definite
question. For example: Do measures of spatial ability, over and above
math and verbal ability measures, add to our ability to discriminate
between groups characterized by levels of high creative achievement?

Forward and stepwise selection procedures work essentially the same
here as in multiple regression. The full stepwise procedure, after
adding a variable at each stage, deletes any previously added variables
that have “become non-significant” as a result of the addition of the
latest variable.
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Fortunately, there is a function that automates stepwise discriminant
analysis:
> ## stepwise discriminant analysis

> library(klaR)

> options(digits=4,scipen=10,width=70)

> fit <- greedy.wilks(GROUP ~ .,

+ data=fb.data,niveau = .10)

> fit

Formula containing included variables:

GROUP ~ EYEHD + WDIM + JAW + EARHD

<environment: 0x0000000017f3a060>

Values calculated in each step of the selection procedure:

vars Wilks.lambda F.statistics.overall p.value.overall

1 EYEHD 0.4279 58.16 9.182e-17

2 WDIM 0.4003 24.96 2.604e-16

3 JAW 0.3383 20.38 6.677e-18

4 EARHD 0.3072 16.89 2.888e-18

F.statistics.diff p.value.diff

1 58.162 9.182e-17

2 2.964 5.687e-02

3 7.791 7.766e-04

4 4.257 1.730e-02
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