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Models and Methods 

Structural equation models have achieved increasing popularity in the social sciences. 

Much of the credit for this popularity can be attributed to the flexibility and power of 

the methods themselves. Equally important has been the availability of computer 

software for performing the modeling process.  

An enormous amount of material has been written on structural modeling. There are 

now numerous textbooks and monographs for the beginner. All of these books have 

significant virtues. The reader with a serious interest in the subject should probably at 

least browse through several of these books. 

For a very interesting debate on the value of structural models in the social sciences, the 

Summer 1987 issue of the Journal of Educational Statistics is strongly recommended. 

This issue contains a critique of path analysis by D.A. Freedman, and responses to that 

critique by a number of writers. 

Discussion of the deeper apects of the theoretical connections between causal inference 

and statistical modeling is beyond the scope of this chapter. I also assume that the 

reader has basic familiarity with the terminology of path diagrams. 

The LISREL Model 

This section begins with a review of several important models for the analysis of 

covariance structures. In the following discussion, all variables will be assumed to be in 

deviation score form (i.e., have zero means) unless explicitly stated otherwise. 

In his 1986 review chapter on developments in structural modeling, Bentler described 3 

general approaches to covariance structure representations. The first and most familiar 

involved integration of the psychometric factor analytic (FA) tradition with the 

econometric simultaneous equations model (SEM). This approach, originated by a 

number of authors including Keesling, Wiley, and Jöreskog was described by Bentler 



with the neutral acronym FASEM. The well-known LISREL model is of course the best 

known example of this approach.  

The LISREL model can be written in three interlocking equations. Perhaps the key 

equation is the structural equation model, which relates latent variables. 

        (1) 

The endogenous, or “dependent” latent variables are collected in the vector  , while 

the exogenous, or “independent” latent variables are in  .   and  are coefficient 

matrices, while   is a random vector of residuals, sometimes called “errors in equations” 

or “disturbance terms.” The elements of   and  represent path coefficients for 

directed relationships among latent variables. It is assumed in general that   and   are 

uncorrelated, and that    is of full rank. 

Because usually   and   are not observed without error, there are also factor model (or 

“measurement model”) equations to account for measurement of these latent variables 

through manifest variables. The “measurement models” for the two sets of latent 

variables are  
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the LISREL model is that  
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,  a d,  , n      are the covariance matrices for , , , and      respectively.  



There seems to be considerable confusion in the literature about the precise assumptions 

required for Equations 1 through 7 to hold. Jöreskog and Sörbom (1989) state the 

assumptions that (1)   is uncorrelated with  , (2)   is uncorrelated with  , (3)   is 
uncorrelated with  , (4)    and   are mutually uncorrelated, and (5)    is of full 

rank. However, it appears that Equation 7 also requires an assumption not stated by 

Jöreskog and Sörbom (1989), i.e., that   and  are uncorrelated. 

This model reduces to a number of well-known special cases. For example, if there are 

no y-variables, then the model reduces to the common factor model, as can be seen from 

Equation 6. 

An important aspect of the LISREL approach is that, in using it, variables must be 

arranged according to type. Manifest and latent, “exogenous” and “endogenous” 

variables are used in different places in different equations. Moreover, LISREL’s 

typology for manifest variables is somewhat different from that used by other models. 

Specifically, in LISREL a manifest variable is designated as x or y on the basis of the 

type (exogenous or endogenous) of latent variable it loads on. 

It is, of course, possible to translate models from a path diagram representation of a 

model to a LISREL model. However, this is not always easy. In some well known cases 

special strategies must be used to “trick” the LISREL model into analyzing a path 

diagram representation. For example, the LISREL equations do not explicitly include 

direct representation of a path in which an arrow goes from a manifest exogenous 

variable to a latent endogenous variable. Consequently a dummy latent exogenous 

variable (identical to the manifest variable) must be created in such cases. 

In his review, Bentler (1986) referred to the models of McArdle (1978) and Bentler and 

Weeks (1979) as “generic” approaches, in that their emphasis was on the distinction 

between independent (exogenous) and dependent (endogenous) variables, rather than 

manifest and latent variables.  

McArdle (1978) proposed an approach that was considerably simpler than the LISREL 

model. This approach, in essence, did not require any partitioning of variables into 

types. One could represent all paths in only two matrices, one representing directed 

relationships among variables, the other undirected relationships. McArdle’s approach, 



which he called the RAM model, could be tested easily as a special case of McDonald’s 

COSAN model.  

McArdle’s specification was innovative, and offered substantial benefits. It allowed path 

models to be grasped and fully specified in their simplest form — as linear equations 

among manifest and latent variables. Instead of 18 model matrices, and a plethora of 

different variable types, one only needed 3 matrices! After reading some of McArdle’s 

early papers, I was motivated to seek an automated approach to structural modeling. 

Ironically, it took some time for McArdle’s work to receive the attention it deserved. 

The work initially met with a lukewarm reception from journal editors and rather harsh 

opposition from some reviewers. It took 4 years for a detailed algebraic treatment 

(McArdle & McDonald, 1984) to pass through the review process and achieve 

publication. By then, unfortunately, the full credit due to McArdle had been diluted.   

The COSAN Model 

This section begins with a brief description of the McDonald’s COSAN model. Let   be 

a population variance-covariance matrix for a set of manifest variables. The COSAN 

model (McDonald, 1978) holds if   may be expressed as 
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   FF F PF F F   (8) 

where P is symmetric and Gramian, and any of the elements of any F matrix or P may 

be constrained under the model to be a function of the others, or to be specified 

numerical values. As a powerful additional option, any square F matrix may be specified 

to be the inverse of a patterned matrix. This “patterned inverse” option is critical for 

applications to path analysis. A COSAN model with k F matrices is referred to as “a 

COSAN model of order k.” 

Obvious special cases are: Orthogonal and oblique common factor models, confirmatory 

factor models, and patterned covariance matrices.  

McDonald’s COSAN model is a powerful and original approach which offers many 

benefits to the prospective tester of covariance structure models. Testing and estimation 

for the model were implemented in a computer program called, aptly enough, COSAN 

(See Fraser and McDonald, 1988 for details on a recent version of this program, which 

has been available since 1978).  



In 1978, J. J. McArdle proposed some simple rules for translating any path diagram 

directly to a structural model. In collaboration with McDonald, he proposed an 

approach which yielded a model directly testable with the COSAN computer program. 

McArdle’s RAM Model 

McArdle’s approach is based on the following covariance structure model, which he has 

termed the RAM model: 

Let v be a ( ) 1p n   random vector of p manifest variables and n latent variables in 

the path model, possibly partitioned into manifest and latent variables subsets in m and 

l, respectively, in which case  
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(This partitioning is somewhat convenient, but not necessary.) For simplicity assume all 

variables have zero means. Let F be a matrix of multiple regression weights for 

predicting each variable in v from the 1p n   other variables in v. F will have all 

diagonal elements equal to zero. In general, some elements of F may be constrained by 

hypothesis to be equal to each other, or to specified numerical values (often zero). Let r 

be a vector of latent exogenous variables, including residuals. The path model may then 

be written  

  v Fv r  (10) 

In path models, all endogenous variables are perfectly predicted through the arrows 

leading to them. Since endogenous variables are dependent variables in one or more 

linear equations, their variances and covariances can be determined from the variances 

and covariances of the variables with arrows pointing to them. Ultimately, the variances 

and covariances of all endogenous variables are explained by a knowledge of the linear 

equation set up and the variances and covariances of exogenous variables in the system. 

Consequently, elements of r corresponding to endogenous variables in v will be null. The 

matrix F contains the regression coefficients normally placed along the arrows in a path 

diagram. 
ij
f  is the path coefficient from 

j
v  to 

i
v . If a variable 

i
v  is exogenous, i.e., has 

no arrow pointing to it, then row i of F will be null, and 
i i

r v . Hence, the non-null 



elements of the variance covariance matrix of r will be the coefficients in the 

“undirected” relationships in the path diagram.  

Define )(E P rr . Furthermore, let )(E W vv , and )(E mm . The implications 

of Equation 10 for the structure of  , the variance-covariance matrix of the manifest 

variables, can now be derived. Regardless of whether the manifest and latent variables 

were partitioned into distinct subsets in v , it is easy to construct a “filter matrix” J 

which carries v into m. If the variables in v are partitioned into manifest and latent 

variables, one obtains  

     J I 0  (11) 

 m Jv  (12) 

and consequently 

 ) ( )( EE      J vv Jmm JWJ  (13) 

 

Note that, since I - F is by assumption nonsingular, Equation 10 may be rewritten in 

the form 

 1( ) v I F r  (14) 

one obtains 

 1 1( ) ( )    W I F P I F  (15) 

Equations 13 and 15 imply  

 1 1( ) ( )    J I F P I F J  (16) 

This shows that any path model may be written in the form  
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as a COSAN model of order 2, where (assuming the manifest and latent variables are 

stacked in separate partitions) 
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and 
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( )   F F I B  (19) 

McArdle’s formulation may thus be characterized as follows: 

(1) For convenience, order the manifest variables in the vector m, and the latent 

variables in the vector l. The path model is then tested as a COSAN model of order 2, 

in which 

(2) 
1

    F I 0 , where I is of order p p and 0 is p n . 

(3) 
2

F  is the inverse of a square matrix B  of “directed relationships.” B  is constructed 

from the path diagram as follows. Set all diagonal entries of B  to 1 . Examine the 

path diagram for arrows. For each arrow pointing from 
j

v  to 
i

v , record its path 

coefficient in position 
ij

b  of matrix B . 

(4) P, a symmetric matrix, contains coefficients for “undirected” paths between 

variables 
j

v  and 
i

v  recorded in positions 
ij

p  and 
ji

p . 

The Bentler-Weeks Model 

The RAM model is somewhat wasteful in terms of the size of some of its matrices. 

Bentler and Weeks (1979) produced an alternative model which is somewhat more 

efficient in the size of its matrices. Specifically, the 
2

F  and P matrices are quite large in 

the RAM model, and have a large number of zero elements. Bentler and Weeks showed 

how, in situations where there are no manifest exogenous variables (i.e., all manifest 

variables have at least one arrow pointing to them), the McArdle-McDonald approach 

may be modified to reduce the size of the model matrices. 

Partition v in the form 
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where m stands for “manifest,” l for “latent,” the subscripts x and n refer to 

“exogenous” and “endogenous,” respectively. 

Then one may write  v Fv r  in a partitioned form as 
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Now define n as a vector containing all the endogenous, or “dependent” variables. We 

may partition m into manifest exogenous and endogenous variables, i.e.,  
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Then  
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One may then write 
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where  
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The derivation now proceeds with an algebraic development similar to the RAM-

COSAN equations. Rearranging Equation 24, one obtains 
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whence, letting  
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we have 
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G is a filter matrix similar to J in the McArdle-McDonald specification. 1
2 2

F B , 

where 
2

B  is a matrix containing path coefficients for directed relationships among 

endogenous variables only, and having 1  as each diagonal element. 
3

F contains path 

coefficients from exogenous variables to endogenous variables only, and P contains 

coefficients for undirected relationships, i.e., the variance-covariance parameters for the 

latent exogenous variables. 

This clever algebraic refinement allowed some of the virtues of the McArdle approach to 

be retained, while expressing the essential relationships in smaller matrices. (Notice how 

several of the null submatrices are eliminated.) However, this model also had some 

minor drawbacks. It required partitioning variables into exogenous and endogenous 

types, and it did not allow explicit expression of manifest exogenous variables.  

An alternative model allows us to treat manifest exogenous variables explicitly. If you 

add a vector of manifest variables to each of the two variable lists in the Bentler-Weeks 

(1979) model, and modify the regression coefficient matrices accordingly, you arrive at 

the model used by Steiger (1994) in SEPATH. In this model, which is similar to one 

given by Bentler and Weeks (1980), variables are partitioned into two groups.  

The SEPATH Model 

Partition all the variables in the path diagram into vectors 
1

s  and 
2

s  as follows: 
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Then one may write 
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and 
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Assuming a nonsingular I B , Equation 33 may be rewritten as  

 1
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Let B  be a filter matrix which extracts the manifest variables from 
1

s , and let 

2 2
( )E s s  be the covariance matrix for 
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and one obtains the following model for covariance structure: 

 11) )( (      G B BI I G  (38) 

The covariance matrix 
1

Cov( ) s   for manifest exogenous, manifest endogenous, and 

latent endogenous variables may be computed as 

 1 1) (( )    IB I B   (39) 

The model of Equation 38 allows direct correspondence between all permissible PATH1 

statements and the algebraic model. There is no need to concoct dummy latent 

variables. All possible types of relationships among manifest and latent variables are 

accounted for. After a model is complete, all variables can immediately be assigned to 

one of the 4 vectors mn, mx, ln, or lx. All coefficients (for arrows) are then assigned to 

the matrices F1 through F8. The column index for a variable (in any of these 8 matrices) 

represents the variable from which the arrow points, the row index the variable to 

which the arrow points. Coefficients for wires or two-headed arrows (“slings”) are 

represented in a similar manner in the matrix  .  



The model of Equation 38 sacrifices some of the simplicity of the RAM model, because 

variables must be assigned to 4 types before the location of model coefficients can be 

determined. However, in our typology and with the SEPATH diagramming rules the 

typing of each variable into one of 4 categories can be determined by looking only at 

that variable in the path diagram. Because two headed arrows are eliminated, a variable 

is endogenous if and only if it has an arrowhead directed toward it. A variable is latent 

if and only if it appears in an oval or circle. (If it is not already obvious, let us note that 

with two headed arrows one must look away from the variable of interest to determine 

if the variable is endogenous, because an arrowhead attached to the variable and 

pointing to it might be two-headed! Not only is the SEPATH system less cluttered, but 

it is also visually more efficient.) 

Two final points should be emphasized. First, it is not clear which of the above models 

is, in any overall sense, “superior” to the others. Second, it is possible to express some of 

the models as special cases of the others. For example, the LISREL model can be 

written easily as a COSAN model. To see why, suppose that the manifest and latent 

variables were ordered in the v of Equation 10 so that 
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Then it follows immediately that one may write * * v F v r , where 
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and 

  42 

  



 (1) 

If P* is defined as the covariance matrix of r*, then clearly one can test any LISREL 

model as a COSAN model of the form 

S = G (F* - I)-1 P (F′* - I)-1G′ (2) 

where G is a matrix which filters x and y from v. 
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