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Introduction

@ In this module, we begin the study of the classic analysis of variance
(ANOVA) designs.

@ Since we shall be analyzing these models using R and the regression
framework of the General Linear Model, we start by recalling some of
the basics of regression modeling.

@ We work through linear regression and multiple regression, and
include a brief tutorial on the statistical comparison of nested multiple
regression models.

@ We then show how the classic ANOVA model can be (and is)
analyzed as a multiple regression model.
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Basic Linear Regression in R

o Let's define and plot some artificial data on two variables.
> set.seed(12345)
> x <- rnorm(25)
>y <= sqrt(1/2) * x + sqrt(1/2) * rnorm(25)
> plot(x, y)
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Basic Linear Regression in R

@ We want to predict y from x using least squares linear regression.

o We seek to fit a model of the form

yi=Bo+Pixi+e=yi+e

while minimizing the sum of squared errors in the “up-down” plot
direction.

@ We fit such a model in R by creating a “fit object” and examining its
contents.

@ We see that the formula for y; is a straight line with slope 8; and
intercept [p.
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Basic Linear Regression in R

Basic Linear Regression in R

@ We start by creating the model with a model specification formula.

@ This formula corresponds to the model stated on the previous slide in
a specific way:

@ Instead of an equal sign, a “"is used.
@ The coefficients themselves are not listed, only the predictor variables.
© The error term is not listed

@ The intercept term generally does not need to be listed, but can be
listed with a “1".

@ So the model on the previous page is translated as y ~ x.
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Basic Linear Regression in R

@ We create the fit object as follows.
> fit.1 <- 1lm(y ~ x)

@ Once we have created the fit object, we can examine its contents.

> summary (fit.1)

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-1.8459 -0.6692 0.2133 0.5082 1.2330

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.2549 0.1754 1.453 0.159709
X 0.8111 0.1894 4.282 0.000279 ***
Signif. codes: O '*¥x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8771 on 23 degrees of freedom
Multiple R-squared: 0.4435,Adjusted R-squared: 0.4193
F-statistic: 18.33 on 1 and 23 DF, p-value: 0.0002791
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Basic Linear Regression in R

@ We see the printed coefficients for the intercept and for x.

@ There are statistical t tests for each coefficient. These are tests of the
null hypothesis that the coefficient is zero.

@ There is also a test of the hypothesis that the squared multiple
correlation (the square of the correlation between y and y) is zero.

@ Standard errors are also printed, so you can compute confidence
intervals. (How would you do that quickly “in your head?" (C.P.)

@ The slope is not significantly different from zero. Does that surprise
you? (C.P.)

@ The squared correlation is .4435. What is the correlation in the
population? (C.P.)
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Basic Linear Regression in R

o If we want, we can, in the case of simple bivariate regression, add a
regression line to the plot automatically using the abline function.
> plot(x, y)
> abline(fit.1, col = "red")
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Multiple Regression in R

@ If we have more than one predictor, we have a multiple regression
model.

@ Suppose, for example, we add another predictor w to our artificial
data set.

@ We design this predictor to be completely uncorrelated with the other
predictor and the criterion, so this predictor is, in the population, of
no value.

@ Now our model becomes

yi = Bo + Bixi + Bow; + €

> w <- rnorm(25)
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Multiple Regression in R

@ How would we set up and fit the model

yi = Po + B1xi + Baw; + €

in R?
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Multiple Regression in R

@ How would we set up and fit the model
Yi = Bo + Bixi + Powi + e

in R?
@ That's right,
> fit.2 <- Im(y ~ x + w)
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Multiple Regression in R

> summary (fit.2)

Call:
Im(formula =y ~ x + w)

Residuals:
Min 1Q Median 3Q Max
-1.8475 -0.6693 0.2198 0.5108 1.2298

Coefficients:

Estimate Std. Error t value
(Intercept) 0.254043 0.181833 1.397
X 0.812727 0.202128 4.021
w 0.004366 0.152239 0.029

Signif. codes: O 'xxx' 0.001 '*x' 0.01

Residual standard error: 0.8968 on 22 degrees of freedom
Multiple R-squared: 0.4435,Adjusted R-squared:
F-statistic: 8.768 on 2 and 22 DF, p-value: 0.001584
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Nested Models

Introduction

@ The situation we examined in the previous sections is a simple
example of a sequence of nested models.

@ One model is nested within another if it is a special case of the other
in which some model coefficients are constrained to be zero.

@ The model with only x as a predictor is a special case of the model
with x and w as predictors, with the coefficient 5, constrained to be
zero.
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Nested Models

Nested Models

Model Comparison

@ When two models are nested multiple regression models, there is a
simple procedure for comparing them.

@ This procedure tests whether the more complex model is significantly
better than the simpler model.

@ In the sample, of course, the more complex of two nested models will
always fit at least as well as the less complex model.
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Nested Models

Partial F-Tests: A General Approach

@ Suppose Model A includes Model B as a special case. That is, Model
B is a special case of Model A where some terms have coefficients of
zero. Then Model B is nested within Model A.

o If we define 5SS, to be the sum of squared residuals for Model A, SS,
the sum of squared residuals for Model B.

@ Since Model B is a special case of Model A, model A is more complex
so SSp, will always be as least as large as SS,.

o We define df, to be n— p,, where p, is the number of terms in Model
A including the intercept, and correspondingly df, = n — pp.

@ Then, to compare Model B against Model A, we compute the partial
F —statistic as follows.

F - Mscomparison - (Ssb - Ssa)/(pa - pb) 1
R VT SS./df, (1)
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Nested Models

Partial F-Tests: A General Approach

@ R will perform the partial F-test automatically, using the anova
command.

> anova(fit.1, fit.2)

Analysis of Variance Table

Model 1: y ™ x
Model 2: y " x + w

Res.Df RSS Df Sum of Sq F Pr(>F)
1 23 17.694
2 22 17.693 1 0.00066144 8e-04 0.9774

@ Note that the p value for the model difference test is the same as the
p value for the t-test of the significance of the coefficient for w
shown previously.
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Nested Models

Partial F-Tests: A General Approach
@ What happens if we call the anova command with just a single
model?

> anova(fit.1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr (>F)
X 1 14.102 14.1025 18.331 0.0002791 s*x**
Residuals 23 17.694 0.7693

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

@ Note that the p-value for this test is the same as the p-value for the
overall test of zero squared multiple correlation shown in the output
summary for fit.1.

e What is going on?
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Nested Models

Partial F-Tests: A General Approach

@ It turns out, if you call the anova command with a single fit object, it
startes by comparing the first non-intercept term in the model against
a baseline model with no predictors (i.e., just an intercept).

@ If there is a second predictor, it compares the model with both
predictors against the model with just one predictor.

@ It produces this sequence of comparisons automatically.

@ To demonstrate, let's fit a model with just an intercept.
> fit.0 <- 1m(y ~ 1)

@ Recall that the 1 in the model formula stands for the intercept.

@ No let's perform a partial F-test comparing £it.0 with fit.1.
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Nested Models

Partial F-Tests: A General Approach

@ Here we go.
> anova(fit.0, fit.1)

Analysis of Variance Table

Model 1: y 7 1
Model 2: y ™ x

Res.Df RSS Df Sum of Sq F Pr(>F)
1 24 31.796
2 23 17.694 1 14.102 18.331 0.0002791 *x*x
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

@ Note that we get exactly the same result for the model comparison as
we got when we ran anova on just the fit.1 object.
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ANOVA as Dummy Variable Regression

@ Suppose we have 3 groups, and we want to test the null hypothesis
that all 3 come from populations with the same mean. A side
assumption is that all groups have the same variance, and that the
population distributions are normal.

@ The alternative hypothesis is that at least one of the groups has a
mean that is different from the others.

@ Suppose that we want to test this hypothesis with some artificial
data. In Group 1, the scores are 1,2,3. In Group 2, the scores are
4.5,6. In Group 3, they are 7,8,9.

@ How can we set up a regression model corresponding to the null
model?
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ANOVA as Dummy Variable Regression

The Null Model

@ Actually, such a model is very simple to specify, providing we learn a
couple of simple tricks.

@ First, instead of conceptualizing our scores as 3 columns with 3
numbers in each column, imagine them as stacked in a single vector
of 9 scores, representing 9 observations from the variable y.

@ Our null model is simply
yi = Po+ e (2)
@ Think about it. If all 3 population means are equal to a common

value, then all 9 scores represent random variation around a single
value [p.
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ANOVA as Dummy Variable Regression

The Null Model

@ Soin R, we could fit the model as follows.
>y <= 1:9
> model.0 <- Im(y ~ 1)

@ We want to compare this model against a model that allows each
group to have its own mean.

@ How do we do that? The answer is to create dummy predictors.

@ Let's see how that is done.
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ANOVA as Dummy Variable Regression

The Alternative Model

@ Remember, our baseline model includes an intercept.
@ Let’s consider why R signifies and intercept with a 1.

@ The model
yi=PBo+ e

can be rewritten as
vi = BoOne + ¢

where One is a “dummy variable” that always takes on the value 1.

@ Since every variable has a 1 for the (implicit) intercept “variable,” we
need to allow Groups 1 and 2 to vary from the value (g in order for
them to be modeled as having different means from Group 3.
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ANOVA as Dummy Variable Regression

The Alternative Model

@ That is easy to do. Simply create two more dummy variables called
Groupl and Group2. Groupl takes on the value 1 for any observation
in Group 1, but it takes on the value 0 otherwise. Group2 takes on
the value 2 for any observation in Group 2, but takes on the value 0
otherwise.

>

> Groupl <- c(1, 1, 1, 0, 0, 0, O, O, 0)
> Group2 <- c(0, 0, 0, 1, 1, 1, 0, 0, 0)

> s

@ Our non-null model is then
yi = Bo + B1Groupy + 32 Groups + €;

o We fit this model in R as
> model.1 <- 1m(y ~ 1 + Groupl + Group2)
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ANOVA as Dummy Variable Regression

The Alternative Model

@ To test the null hypothesis of equal means against the alternative
that the means may not be equal, we compare the two models.

> anova(model.O, model.1)
Analysis of Variance Table
Model 1: y ~ 1

Model 2: y ~ 1 + Groupl + Group2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 8 60
2 6 6 2 54 27 0.001 *x
Signif. codes: O 'x*x*' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

@ Notice that the value of the F-statistic is 27.00, so the model that
allows the group means to each be different is significantly better
than the model that forces them all to be the same.

@ Since our null model only had an intercept, we would get the identical
result running the anova
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Using Factor Variables

@ A couple of observations are in order. First, we would get the same
F-statistic had we chosen our dummy variables to be Group?2 and
Group3 (or Groupl and Group3) instead of Groupl and Group?.

@ Second, although this is straightforward, it is tedious.

R developers have automated the whole process through the use of
factor variables.

@ A factor variable contains codes for the various groups. If you include
a factor variable in a regression formula, R automatically substitutes
dummy variables for it.

@ Let’s create a factor variable called Group.
> Group <- factor(c(l, 1, 1, 2, 2, 2, 3, 3, 3))
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Using Factor Variables

@ Now, we'll fit a model with the Group variable as the only predictor.

> anova.model <- lm(y ~ Group)
> anova(anova.model)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

Group 2 54 27 27 0.001 **x*
Residuals 6 6 1
Signif. codes: 0O '**x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

@ Since the factor variable includes two dummy predictors (implicitly),
the anova command compares a model with both predictors against a
model with just the intercept.
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Using Factor Variables

@ > summary(anova.model)

Call:
Im(formula = y ~ Group)

Residuals:

Min 1Q Median 3Q Max

=il =il 0 1 1
Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 2.0000 0.5774  3.464 0.013400 *
Group2 3.0000 0.8165 3.674 0.010402 *
Group3 6.0000 0.8165 7.348 0.000325 **x*
Signif. codes: O '**x' 0.001 '*x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 6 degrees of freedom
Multiple R-squared: 0.9,Adjusted R-squared: 0.8667
F-statistic: 27 on 2 and 6 DF, p-value: 0.001
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Using Factor Variables

@ Note that the factor variable “decided” to create dummy variables for
Group?2 and Group3, rather than Groupl and Group2.

@ In our data, the cell means were 2,5, and 8. Note how the intercept
and the coefficients for Groups 2 and 3 reproduce those means.

@ Scores in Group 1 are reproduced only with the intercept (2) and
error, so they have a mean of 2.

@ Scores in Group 2 are reproduced with the intercept (2) plus the
coefficient for Group 2 (i.e., 3) plus error, so they are estimated to
have a population mean of 5, and so on.
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