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Introduction

In this module, we review some general principles of confidence interval
estimation.

We take the position that confidence intervals generally provide more of
the kind of statistical information that social scientists are looking for in
their data analyses.

Social science textbooks present only a narrow account of what is available
in confidence interval estimation methods.

We demonstrate how the virtues of confidence interval estimation can be
extended beyond simple univariate statistics to more complex methods
such as ANOVA, multiple regression, structural equation modeling, and
multivariate analysis.
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Problems with Significance Testing Introduction

Problems with Significance Testing

Introduction

We begin by returning briefly to first principles.

We argue hat significance tests, though almost always reported in the

analysis of social science data, are seldom to be preferred, and often
simply inappropriate.
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Problems with Significance Testing
Two Kinds of Significance Testing

We are performing a simple two-group experiment in which an
experimental group is compared to an independently sampled control
group.

The theoretical question of interest is frequently phrased as, "Has the
experimental treatment made any difference?”
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Problems with Significance Testing
Two Kinds of Significance Testing

In this case, the statistical null and alternative hypotheses are
Ho: pi=po Hi: pa# po.

We test the hypothesis with the standard 2-sample t-test.
If the t is large enough in absolute value, we reject Hp.
Otherwise, loosely speaking, we “accept” Hp.

The possibilities are summarized in the classic 2 x 2 table.
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Problems with Significance Testing
Two Kinds of Significance Testing

2 x 2 Table for Statistical Decisions
State of the World

Hy H,
Hy Correct Type II Error
Acceptance
Decision B
H, Type I Error Correct
a Rejection

There are two kinds of error, with probabilities a and S.
There is a trade-off between the two probabilities.

The substantive meaning of the two kinds of error changes, depending on
the kind of statistical testing, so of course, the meaning of the trade-off
also changes.

In the context of significance testing, we can define two basic kinds of
situations, reject-support (RS) and accept-support (AS)-

James H. Steiger (Vanderbilt University) Confidence Intervals on Effect Size 7 / 50



Problems with Significance Testing Two Kinds of Significance Testing

Problems with Significance Testing
Two Kinds of Significance Testing

In RS testing, the null hypothesis is the opposite of what the researcher
actually believes, and rejecting it supports the researcher’s theory.

In a two group RS experiment, the experimenter believes the treatment
has an effect, and seeks to confirm it through a significance test that
rejects the null hypothesis.

In the RS situation, a Type | error represents, in a sense, a "false positive”
for the researcher’s theory.

From society's standpoint, such false positives are particularly undesirable.
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Problems with Significance Testing Reject-Support Testing

Problems with Significance Testing
Reject-Support Testing

In RS testing, a Type Il error is a tragedy from the researcher’s standpoint,
because a theory that is true is, by mistake, not confirmed.

So, for example, if a drug designed to improve a medical condition is found
(incorrectly) not to produce an improvement relative to a control group,

@ A worthwhile therapy will be lost, at least temporarily, and
@ The experimenter's worthwhile idea will be discounted.

As a consequence, in RS testing, society, in the person of journal editors
and reviewers, insists on keeping a low.

The statistically well-informed researcher makes it a top priority to keep
low (and power high) as well.

Ultimately, of course, everyone benefits if both error probabilities are kept
low, but unfortunately there is usually, in practice, a nontrivial trade-off

between the two types of error.
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Problems with Significance Testing
Accept-Support Testing

In AS testing, Hg is what the researcher actually believes, so accepting it
supports the researcher’s theory.

In this case, a Type | error is a false negative for the researcher’s theory,
and a Type |l error constitutes a false positive.

Consequently, maintaining a very low Type | error rate like .001, is actually
"stacking the deck” in favor of the researcher’s theory in AS testing.
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Problems with Significance Testing
Summing Up

To summarize, in RS research:
@ The researcher wants to reject Hp.
@ Society wants to control Type | error.
@ The researcher must be very concerned about Type Il error.
@ High sample size works for the researcher.

@ If there is “too much power,” trivial effects become “highly
significant.”

In AS research, on the other hand:
© The researcher wants to accept Hp.

@ "“Society” should be worrying primarily about controlling Type Il
error, although it sometimes gets confused and retains the
conventions applicable to RS testing.

@ The researcher must be very careful to control Type | error.
@ High sample size works against the researcher.

@ If there is "too much power,” the researcher’s theory can be
“rejected” by a significance test even though it fits the data almost
perfectly.
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Sl
Some Typical Problems

Misleading p-values

In response to the inherent dissatisfaction with the dichotomous outcomes
inherent in Neyman-Pearson hypothesis testing, researchers have looked to
p-values as a solution.

Probability levels can deceive about the "strength” of a result, especially
when presented without supporting information.

For example, a p level of .075 could represent a powerful effect operating
with a small sample, or a tiny effect with a huge sample.

Clearly then, we need to be careful when comparing p levels.
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Some Typical Problems

Illogical Model Testing

Model testing often involves computation of a “badness of fit" test, often
mislabeled as a test of “goodness of fit.”

Rejecting the null hypothesis rejects the model, which, typically, the
experimenter wants to accept.

Rejection of an “almost true” null hypothesis in such situations frequently
has been followed by vague, convoluted statements that the rejection
shouldn’t be taken too seriously.

On occasion, the testing has been performed with such low precision that
accepting the model was inevitable — yet few noticed.

On other occasions, the testing was performed with such high precision
that virtually any departure from perfect fit would be detected.
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The Value of Interval Estimates
The Right Answer to the Right Question

Much psychological research is exploratory. The fundamental questions we
are usually asking are:

@ What is our best guess for the size of the population effect?

© How precisely have we determined the population effect size from our
sample data?

Significance testing fails to answer these questions directly.
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The Value of Interval Estimates
The Right Answer to the Right Question

Confidence interval estimation provides a convenient alternative to
significance testing in most situations.

In the 2-sample t-test of equal means, if the hypothesis test is 2-sided, the
hypothesis is rejected if and only if the confidence interval excludes zero.

Confidence intervals tell us whether Hy was rejected, but also give us a
much better idea of why it was or wasn't rejected.

On the next slide, we see 3 confidence intervals from 3 experiments.
Contrast what the hypothesis test result might convey with what the
confidence intervals clearly tell us.
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The Right Answer to the Right Question
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Reasons Why Confidence Intervals Were Reported Infrequently

Reasons Why Confidence Intervals Were Reported
Infrequently

Tradition. Traditional approaches to psychological statistics emphasize
significance testing much more than interval estimation.

Pragmatism. In RS situations, interval estimates are sometimes
embarrassing. When they are narrow but close to zero, they suggest that a
“highly significant” result may be statistically significant but trivial. When

they are wide, they betray a lack of experimental precision.
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Reasons Why Confidence Intervals Were Reported Infrequently

Reasons Why Confidence Intervals Were Reported
Infrequently

Ignorance. In spite of the enhanced emphasis on confidence interval
estimation by journal editors and scientific societies, many people are
simply unaware of some of the very valuable interval estimation procedures
that are available. For example, the vast majority of psychologists are
simply not aware that it is possible to compute a confidence interval on
the squared multiple correlation coefficient. The procedure is not discussed
in many standard texts, and it is not implemented in major statistical
packages.

Lack of availability. Some of the most desirable interval estimation
procedures are computer intensive, and are not implemented in major
statistical packages like SAS, SPSS, STATISTICA, and so on. This makes
it less likely that anyone relying on such software will try the procedure.
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Methods for Interval Estimation Introduction

Methods for Interval Estimation

Introduction

In this section, we begin by reviewing the basic definition of a confidence
interval, and the simple approach used to generate the simple confidence
intervals found in most textbooks.

Then we describe the less conventional, more computer-intensive approach
which allows much more interesting and useful intervals to be derived.

Here the discussion becomes somewhat more technical, and we employ
notations that are common in mathematical statistics texts, but that the
typical reader with a basic background in introductory applied statistics
texts may find slightly intimidating.

We try to strike a balance that provides sufficient, but not extraneous,
detail.
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Methods for Interval Estimation

Basic Notation for Interval Estimation

X is a sample of n independent observations from some population.

A(X) is a statistic calculated on X.

0 is a parameter to be estimated.
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Methods for Interval Estimation Basic Notation for Interval Estimation

Methods for Interval Estimation

Basic Notation for Interval Estimation

A lower confidence limit (or lower confidence bound) is a statistic that is
less than or equal to the unknown parameter a certain proportion of the
time. A function A(X) of the observed data X is a 1 — « lower confidence
limit for @ if, over repeated samples,

Pr(AX)<0) =1—-a (1)

In a similar vein, A function B(X) of the observed data X is a 1 — « upper
confidence limit or upper confidence bound for 0 if, over repeated samples,

Pr(B(X)>0)=1—a (2)
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Methods for Interval Estimation

Basic Notation for Interval Estimation

Upper and lower confidence limits usually are combined to yield a
confidence interval (A(X), B(X)), whose endpoints surround the
parameter 6 a certain proportion of the time. We say that A(X) and B(X)
bound a 1 — « confidence interval for 0 if

PrAX) <0< B(X)=1—a (3)

In practice, one usually constructs the confidence interval by choosing
A(X) and B(X) to be, respectively, lower and upper 1 — /2 confidence
limits so that the confidence interval is equally likely to be entirely below
or above 6.
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Methods for Interval Estimation

Traditional Confidence Intervals

Traditional confidence intervals given in most introductory and
intermediate texts rely on manipulation of a simple probability statement.

So, for example, we start with a statement about the sampling distribution
of the sample mean, i.e.,

X —p
Pr| —1.96 < < +196| = .95
( S ofvn =T )

After simple manipulation, we obtain
- o

Pr <X —1.96—
N \/5
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Methods for Interval Estimation

Traditional Confidence Intervals

A number of simple inequalities can be converted into confidence intervals
in this way. Typically, one finds, in elementary to intermediate texts,
confidence intervals for:

@ A single mean

The difference between two means
A single contrast on means

A single variance

The ratio of two variances

© 0 6 0 ©

A single correlation
@ A single proportion

An element common to the preceding intervals is that an interval
statement about the distribution of the null distribution of a test statistic
can be manipulated easily to yield the desired confidence interval.
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Methods for Interval Estimation

Traditional Confidence Intervals

Situations where

@ The distribution of the test statistic changes as a function of the
parameter to be estimated, and

@ Simple interval manipulation does not yield a convenient confidence
interval

are generally not discussed.
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Methods for Interval Estimation Traditional Confidence Intervals

Methods for Interval Estimation

Traditional Confidence Intervals

Example

Consider the sample squared multiple correlation, whose distribution
changes as a function of the population squared multiple correlation.
Confidence intervals for the population squared multiple correlation are
very informative, yet are not discussed in most standard texts, because a
single simple formula for the direct calculation of such an interval cannot
be obtained in a manner analogous to the way we obtain a confidence
interval for p.
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Methods for Interval Estimation
A More General Approach

A general method for confidence interval construction is available that
includes the method discussed earlier as a special case, but also allows
confidence limits and confidence intervals to be constructed when the
aforementioned method cannot be applied.

This method combines two general principles, which we call the confidence
interval transformation principle and the inversion confidence interval
principle.
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Methods for Interval Estimation
A More General Approach

Confidence Interval Transformation Principle. Let f(6) be a monotonic,
strictly increasing continuous function of 8. Let a and b be endpoints of a
1 — « confidence interval on quantity 6. Then f(a) and f(b) are endpoints
of a 1 — « confidence interval on f(6).

To prove the proposition, recall that a function is monotonic and strictly
in-creasing if, when plotted in the plane, the graph "keeps going up” from
left to right, that is, it never flattens out or goes down. A monotonic,
strictly increasing function is order preserving. Because the plot never
flattens out, if x > y, then f(x) > f(y). This can be seen easily by
examining the figure on the next slide.

James H. Steiger (Vanderbilt University) Confidence Intervals on Effect Size 28 / 50



Methods for Interval Estimation A More General Approach

Methods for Interval Estimation
A More General Approach

f(x)

fy)

y X
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Methods for Interval Estimation A More General Approach

Methods for Interval Estimation
A More General Approach

If a and b are endpoints of a valid .95 confidence interval on quantity 6,
then 95% of the time in the long run,f is between a and b.

If £() is a monotonic strictly increasing function, b is greater than 6, and 6
is greater than a, then it must also be the case that f(b) > f(6), and
f(0) > f(a).

Consequently, if a and b are endpoints of a 1 — « confidence interval for
parameter 6, then f(a) and f(b) are endpoints of a valid 1 — « confidence
interval on f(6).
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Methods for Interval Estimation
A More General Approach

Example (A Confidence Interval for o)

Suppose you calculate a confidence interval for the population variance o2.

Such a confidence interval is discussed in many elementary textbooks. You
desire a confidence interval for o. Confidence intervals for o are seldom
discussed in textbooks. However, one may be derived easily. Because o
takes on only nonnegative values, it is a monotonic increasing function of
o2 over its domain. Hence, the confidence interval for ¢ is obtained by
taking the square root of the endpoints for the corresponding confidence
interval for o2. )
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Methods for Interval Estimation
A More General Approach

Example (Confidence Interval for p)

The confidence interval transformation principle is most valuable when you
have a confidence interval for a quantity that is an uninteresting function
of an interesting quantity. Suppose one calculates a confidence interval for
z(p), the Fisher transform of p, the population correlation coefficient.
Taking the inverse Fisher transform of the endpoints of this interval will
give a confidence interval for p. This is, in fact, the method employed to
calculate the standard confidence interval for a correlation. )
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Methods for Interval Estimation
A More General Approach

Example (Confidence Interval for Eg)

Recall from the preceding lecture on the t distribution that the 1-sample
t-test has a distribution that is noncentral Student t, with n — 1 degrees of
freedom, and a noncentrality parameter that is equal to

§ = /nE, = /nt—H0
g

Since E; is a monotonic, strictly increasing function of 4, if we can obtain
a confidence interval for §, we can directly transform its endpoints into a
confidence interval for Es.
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Methods for Interval Estimation

Obtaining a Confidence Interval for §

The picture on the next slide contains the information that is key to
understanding how to obtain a confidence interval on §.

Suppose degrees of freedom for the t statistic are fixed at v.

Consider any value of §. With degrees of freedom fixed, it completely
determines the distribution of t.

Among other things, § determines the 95th and 5th percentiles of the
distribution of t.

As § goes up, the distribution of t goes to the right, and the 5th and 95th
percentiles are monotonic functions of 4.

Notice that each value of § is connected with one and only one value of

Pgs. And, each 95th percentile is connected with one and only one value
of 4.
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Methods for Interval Estimation

Obtaining a Confidence Interval for §

i

Observed Value of ¢t

/

95th percentile

Sth percentile
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Obtaining a Confidence Interval for &
Methods for Interval Estimation

Obtaining a Confidence Interval for §

Suppose dg is the true value of 4.

Looking at the figure, you can see that corresponding to dg is a value tg
that represents the 95th percentile of the t, s, distribution.

What percentage of the time will a value of t exceed ty? Since it is the
95th percentile, this will happen 5% of the time, i.e. a probability of 0.05.

t; is an example of such a value of t.
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Methods for Interval Estimation

Obtaining a Confidence Interval for §

Now here is the key. Notice that, for any observed value of t, we can draw
a line over to the plot and choose a value of §. For example, if we were to
observe tp, we would select dp.

If §o is the true parameter, what percentage of the time would we index a
value larger than §p on the 95th percentile line? And what percentage of
the time would we index a value smaller than g7

So, if every time we observe a t, we select the corresponding value on the
95th percentile line, we have a rule for a 0.95 lower bound for 4!

In a similar way, the 5th percentile line selects a 0.95 upper bound for §.

Taken together, these two bounds produce a 90% confidence interval for 0.
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Methods for Interval Estimation

Obtaining a Confidence Interval for §

In other words, when we observe a value of t, we ask two questions:

@ What value of § is so small that it places the observed t at the 95th
percentile?

@ What value of § is so large that it places the observed t at the 5th
percentile?

Taken together, these values constitute a “zone of reasonableness” for §.
More importantly, they are an exact 90% confidence interval for §.
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Methods for Interval Estimation

Graphical Construction of a Confidence Interval on ¢

Suppose we observe a t value of 2.60 with v = 18.

Below, using R, we show a graph of the percentile values of a value of 2.60
in the t, 5 distribution as a function of 4.

We are looking for a value of § that places the observed value of t = 2.60
precisely at the 95th and the 5th percentiles.
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Methods for Interval Estimation

Graphical Construction of a Confidence Interval on

> curve(pt(2.6, 18, x), 0.1, 5, xlim = c(0, 5), ylim = c(0
+ 1, = "Cumulative Probability", xlab = "Delta")
> abline 0.05, col = "red")

0.95, col = "red")
1

> abline(h
> grid(col

1.0

0.8

0.6

Cumulative Probability
0.4

0.2

0.0

Delta
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Methods for Interval Estimation

Graphical Construction of a Confidence Interval on

Quick Inspection of the plot reveals that the lower confidence limit is
between 0.7 and 1.0, and the upper limit is between 4.2 and 4.5. Working
on the upper limit, it takes only a minute to home in on the range of the
graph a few times and arrive at the following picture, which pinpoints the
value at around 4.3581

> curve(pt(2.6, 18, x), 4.358, 4.3585,
+

= "Cumulative Probability",

xlab = "Delta")
> abline(h = 0.0, col = "red")
> grid(col = 1)
3
8
8
3
8
3
z 8
z g
)
£ 3
e
o
Y
g 8
s g
g2 3
s 3
3
5
8
3
B
©
8
8
g
3
s
4.3580 43581 43582 43583 43584 43585

Delta

Following the same approach, we establish the lower limit for § at 0.7768.
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Methods for Interval Estimation

Graphical Construction of a Confidence Interval on ¢

The identical approach we used here to find a confidence interval for ¢ in
the noncentral t distribution may be used to find a confidence interval for
the noncentrality parameter ) in the noncentral F or noncentral x?
distributions.

Such confidence intervals are seldom if ever interesting in and of
themselves.

However, § and X are often monotonically related to statistical quantities
of considerable interest.

Consequently, we may employ the confidence interval transformation
principle to transform the uninteresting intervals to interesting ones.
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Methods for Interval Estimation

The Inversion Confidence Interval Principle

Inversion Confidence Interval Principle. Let v be the observed value of X,
a random variable having a continuous (cumulative) probability
distribution expressible in the form

F(v,0) =Pr(X <wv|0)

for some numerical parameter 6.

Let F(v,0) be monotonic, and strictly decreasing in 6, for fixed values of
v. Let /1 and b be chosen so that

PriX<vld=h)=1-a/2

and
Pr(X>vl@=h)=1-a/2

Then / is a lower 1 — /2 confidence limit for 0, k is an upper 1 — ap
confidence limit for 8, and the interval with /; and b as endpoints is a
1 — « confidence interval for 6.
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Methods for Interval Estimation

Confidence Intervals on Es

If this were a test on a single mean, with n = 19, we know from the
preceding module that § = \/nE; tem Using the confidence interval
transformation principle, we divide the endpoints of (0.7768,4.3581) by

V19, obtaining
> c(0.7768, 4.3581)/sqrt(19)

[1] 0.1782 0.9998

Our 90% confidence interval for Es ranges from 0.1782 to 0.9998.

In this case, Es = (1 — po)/o represents the amount by which the null
hypothesis is wrong in standard deviations. We see that the confidence
interval ranges from an effect that generally would be considered small to
one that would almost certainly be considered large.

In practical terms, such a range is very substantial, illustrating that our
experimental precision is quite low in this case.
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Methods for Interval Estimation

Confidence Intervals on Es

In the preceding example, we assumed that our t statistic was based on
the analysis of a single mean, and we emerged with a confidence interval

on Es = (u— wo)/o.

Now suppose that our t statistic based on 18 degrees of freedom had
instead come from a 2-sample, independent sample design, based on

n1 = n, = 10 observations from two independent groups, and that the null
hypothesis was that Hp : u1 = po.

In this case, we saw in our lecture on the t distribution that the test
statistic has a noncentral t distribution, with 18 degrees of freedom and
noncentrality parameter given by

5 = /ﬂES
ny 4+ no
_ mny  pp — Q2 (4)
ny + no o
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Methods for Interval Estimation

Confidence Intervals on Es

We see from Equation 4 above that we can obtain a confidence interval for
E; from the confidence interval on § by multiplying the endpoints of the
latter by \/(n1 + n2)/(n1m).

We obtain

> sqrt((10 + 10)/(10 * 10)) * c(0.7768, 4.3581)

[1] 0.3474 1.9490

The width of the confidence interval is extremely large. Clearly the effect
is non-zero, but our precision is quite low with only 10 observations per
group.
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Speeding Things Up with Software

We have seen that, by simply employing R graphics and homing in on an
appropriate range, we can deduce a confidence interval on § to any desired
level of precision.

Software is available to automate this process by iteration. For example,
RDASAS3 cites SAS (commercial software) and SPSS (commercial
software) scripts to accomplish the task.

Statistica for Windows (commercial software) includes noncentrality
interval estimation calculators for a variety of statistical tests including
t-tests, ANOVA, multiple regression, and structural equation modeling.

| have a (freeware) little Windows calculator called NDC that performs
various calculations on the noncentral t, noncentral F, and noncentral X2
distributions. You can download that from the software section of my
website.

There is also a somewhat archaic program R2 that runs in a DOS window
under windows and computes a wide variety of tests, confidence intervals,
and power and sample size analyses for multiple regression.

Ken Kelley at Notre Dame has written a very nice R statistics package
called MBESS that automates a number of the calculations we have
examined here.
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Speeding Things Up with Software

In NDC, you simply select the quantity to compute, distribution, and the
dialog box will adjust to ask you for the proper unknowns.

Clicking on Compute will iterate the answer.

The program will quickly iterate quantiles and confidence intervals.

&

Diistribution 5 - Guantity to Compute Help

| rr a1  Cum b TWalue O Delta
% @ 90%C| ¢ 95%CI T 99%C|

Distribution Properties Compute Status -

Tvaue [26 =
aue =4 Finished

Confidence Limits for Delta

Df 18 = Lower |0.776836
Upper |4.35808
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ings Up with Software

Speeding Things Up with Software

Here are some sample calculations in MBESS.

There are some aspects of the notation in MBESS that might confuse you.
Note that, throughout, Kelley labels the input statistic value with the
variable name ncp, rather than t or F. Also, in the single sample case, he
uses upper-case N for the sample size, while in the 2-sample case he uses
n.1and n.

> library (MBESS)

>

> conf.limits.nct(2.6, 18, 0.9)

$Lower .Limit
(1] 0.7768

$Prob.Less.Lower
[11 0.05

$Upper .Limit
[1] 4.358

$Prob. Greater . Upper
{11 0.05
>

> ci.sm(ncp = 2.6, N = 19, conf.level = 0.9)

[1] "The 0.9 confidence limits for the standardized mean are given as:"
$Lower .Conf .Limit . Standardized.Mean
(1] 0.1782

$Standardized. Mean
(1] 0.5965

$Upper . Cont .Linit . Standardized.Mean
{1 0.9998

$Lower .Conf .Linit.sud
(1] 0.3474

[1] 1.163

$Upper . Cont .Linit .snd
[1] 1.949
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Some Caveats

Standardized effect size estimation based on confidence intervals on the
noncentrality parameter offer a substantial improvement over the
traditional t and F hypothesis test results.

They offer all the information in the hypothesis test result, and a lot more.
However, there are some immediate caveats that we should observe:

@ The same issues of robustness that pertain to the traditional
hypothesis tests are also relevant in the interval estimation situation.

@ Generalization of a “standardized effect size” to the case of correlated
sample or unequal variances is not straightforward.
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