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Introduction

Introduction

In this module, we introduce the two-factor completely randomized
analysis of variance design.

We introduce the ANOVA concepts of main effects, simple main effects,
and interactions.

We discuss the measurement of effect size in the context of the design.
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An Introductory Example

An Introductory Example

Maxwell and Delaney (2003) present the following introductory example of
the effect of biofeedback and drug on blood pressure. There were 4 groups
in the study, in a classic 2 × 2 design. The 4 groups were of the 4 possible
combinations of Drug-No Drug, and Biofeedback-No Biofeedback.

Since there are 4 groups, it is possible to analyze the data as a 1-Way
ANOVA.

Loading in the data file, we can see that there is a Group factor, that
describes the combination of conditions and has 4 levels. There are also
two other factor grouping variables, each of which records the
“Present-Absent” status of Drug and Biofeedback.
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An Introductory Example

An Introductory Example

> bp <- read.table("bp.txt", header = T, sep = ",")

> bp

Group Blood.Pressure Biofeedback

1 biofeedback and drug 158 Present

2 biofeedback and drug 163 Present

3 biofeedback and drug 173 Present

4 biofeedback and drug 178 Present

5 biofeedback and drug 168 Present

6 biofeedback alone 188 Present

7 biofeedback alone 183 Present

8 biofeedback alone 198 Present

9 biofeedback alone 178 Present

10 biofeedback alone 193 Present

11 drug alone 186 Absent

12 drug alone 191 Absent

13 drug alone 196 Absent

14 drug alone 181 Absent

15 drug alone 176 Absent

16 neither 185 Absent

17 neither 190 Absent

18 neither 195 Absent

19 neither 200 Absent

20 neither 180 Absent

Drug

1 Present

2 Present

3 Present

4 Present

5 Present

6 Absent

7 Absent

8 Absent

9 Absent

10 Absent

11 Present

12 Present

13 Present

14 Present

15 Present

16 Absent

17 Absent

18 Absent

19 Absent

20 Absent
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An Introductory Example

An Introductory Example

We can analyze these data with the tools we have developed so far, as
follows.

1 First, we can test whether there are any differences between means
with an overall ANOVA F test.

2 Next, we can employ our generalized t statistic to test several specific
hypotheses of interest which we have already encountered.
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An Introductory Example

An Introductory Example

First we run the ANOVA

> attach(bp)

> fit.1 <- aov(Blood.Pressure ~ factor(Group))

> summary(fit.1)

Df Sum Sq Mean Sq F value Pr(>F)

factor(Group) 3 1540 513.3 8.213 0.00155 **

Residuals 16 1000 62.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that there is definitely a significant difference between the groups,
in the sense that we can reject the null hypothesis that all group means
are equal.
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An Introductory Example Interaction Plot

An Introductory Example
Interaction Plot

Next, I am going to jump into something that normally is presented
somewhat later, i.e., an interaction plot of the cell means for the 4 cells of
the design.

They say a picture can be worth a thousand words, and that is essentially
true here.
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An Introductory Example Interaction Plot

An Introductory Example
Interaction Plot

> interaction.plot(Drug, Biofeedback, Blood.Pressure, type = "b",

+ col = "red", pch = 20)
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An Introductory Example Simple Main Effects

An Introductory Example
Simple Main Effects

Let’s go at the analysis in a somewhat non-standard order.

We’ll discuss simple main effects first.

The question of whether there is a simple main effect for Drug at a
particular level of Biofeedback addresses the question, “Within a particular
level of Biofeedback, does Drug have any effect on Blood.Pressure?

Let’s ignore sampling variability for the moment, and imagine that the cell
means plotted on the graph are actually the true population means.

Then we shall assess whether there is a simple main effect for Drug at
level “Present” of Biofeedback.
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An Introductory Example Simple Main Effects

An Introductory Example
Simple Main Effects

We look only at the line representing when Biofeedback is present. It is
the more steeply sloped line.

Then, we examine the values of Blood.Pressure at the two levels
(Present,Absent) of the drug.

This is facilitated in the next graph by drawing horizontal blue dotted lines
to the vertical axis from the points on line marked “Biofeedback Present.”

You can see that the presence of the Drug is coincidental with a 20 point
reduction in Blood.Pressure, as the two points are at 168 and 188.

If these were population means, we would say that the simple main effect
of Drug on Blood.Pressure when Biofeedback is present is −20.

James H. Steiger (Vanderbilt University) 11 / 58



An Introductory Example Simple Main Effects

An Introductory Example
Simple Main Effects
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An Introductory Example Simple Main Effects

An Introductory Example
Simple Main Effects

Notice that, if we knew population means, assessment of whether there is
a simple main effect conditional on the variable that changes across lines
would be easy.

We simply examine the plot and see if the line is flat.

If it is, there is a simple main effect which is easy to characterize if there
are only two levels.

Unfortunately, our task is significantly complicated by the presence of
sampling error.

James H. Steiger (Vanderbilt University) 13 / 58



An Introductory Example Simple Main Effects

An Introductory Example
Simple Main Effects

To analyze whether there is a simple main effect of Drug at level “Absent”
of Biofeedback, we look only at the line representing when Biofeedback is
absent. It is the less steeply sloped line.

You can see from the dotted lines that the presence of the Drug is
coincidental with a 4 point reduction in Blood.Pressure, as the two points
are at 186 and 190.

So the simple main effect in this case is −4
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An Introductory Example Simple Main Effects

An Introductory Example
Simple Main Effects
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An Introductory Example Interaction Effects

An Introductory Example
Interaction Effects

When simple main effects of factor A given B are different for different
levels of B, we say there is an interaction between A and B.

This means that A behaves differently, depending on the value of B

Needless to say, this can be very important in practice.

Two quickly assess whether there are interaction effects from an
interaction plot of population means, we simply examine the plot to see if
the lines are all parallel. If they are not all parallel, then there is an
interaction effect.
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An Introductory Example More Simple Main Effects

An Introductory Example
More Simple Main Effects

To analyze whether there is a simple main effect of Biofeedback at level
“Present” of Drug, we look only at the values representing when Drug is
Present.

We draw lines from them over to the vertical axis.

The difference between the lines is the simple main effect.

We see that the simple main effect of Biofeedback when Drug is present is
−18, that is, an 18 point reduction in blood pressure.

James H. Steiger (Vanderbilt University) 17 / 58



An Introductory Example More Simple Main Effects

An Introductory Example
More Simple Main Effects
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An Introductory Example More Simple Main Effects

An Introductory Example
More Simple Main Effects

Now you try it. What is the simple main effect of Biofeedback when Drug
is “Absent”?
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An Introductory Example More Simple Main Effects

An Introductory Example
Testing for Simple Main Effects

From a plot of cell means, it is easy to see if there are simple main effects.

For the factor represented on the x-axis, the following rules apply:

1 We go to each line in the plot and ask, “Is is flat.”

2 If the line is flat there is no simple main effect at the level of the
second factor represented by that line.

3 If the line is not flat, then there is a simple main effect at the level of
the second factor represented by that line.

There is a second factor to consider, which varies across lines in the plot.
For this factor, we do the following:

1 Go to each level j represented on the x-axis, and draw a vertical line.

2 If all points on the plot that fall on that line are coincident, then
there is no simple main effect for the second factor at level j of the
first factor.

3 If all points on the plot that fall on that line are not coincident, then
there is a simple main effect for the second factor at level j of the
first factor.

4 Equivalently, if the identified points do not all coincide, there is a
simple main effect.
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An Introductory Example Main Effects

An Introductory Example
Main Effects

A main effect in factorial ANOVA refers to an observed difference between
(or differences among, with more than two levels) means that are
calculated across all levels of the other factor(s).

Referring to our interaction plot, and again imagining that the points were
population means devoid of sampling error, the question becomes, “Is level
of Drug related to a difference in Blood .Pressure when we collapse across
levels of Biofeedback?”

Let’s see how we evaluate that question graphically.
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An Introductory Example Main Effects

An Introductory Example
Main Effects

First we go to the point where the Drug is absent, and we average across
the levels of Biofeedback. This gives us the average blood pressure.

In the case of just two levels of Biofeedback, this amounts to plotting a
point halfway between the two values. I’ve done that on the graph.

Next, we do the same thing for the case where the Drug is present.

If these two points were at the same level on the vertical axis, then there
would be no main effect for Drug .
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An Introductory Example Main Effects

An Introductory Example
Main Effects
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An Introductory Example Main Effects

An Introductory Example
Main Effects

Next, we ask what turns out to be a somewhat more difficult question to
visualize.

Is there a main effect for Biofeedback?

Here, we have to “average a line value” by averaging across the points on
each line in the interaction plot.

We draw a horizontal line from these points to the vertical axis.

This is (relatively) easy with two levels of a factor, but somewhat more
difficult with more than two levels.

If the points on the vertical axis do not all coincide, then there is a main
effect for Biofeedback, otherwise there is not.
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An Introductory Example Main Effects

An Introductory Example
Main Effects

James H. Steiger (Vanderbilt University) 25 / 58



Basic ANOVA Analysis The Linear Model ANOVA Parameterization

Basic ANOVA Analysis
The Linear Model ANOVA Parameterization

We can fit the ANOVA model as a linear model with Drug and
Biofeedback as factors.

The complete model includes main effect terms and interaction terms.

Note how the interaction term is indicated: Drug : Biofeedback.

Both main effects and the interaction are significant.

However, since the interaction is significant, main effects are not
necessarily of much interest.
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Basic ANOVA Analysis The Linear Model ANOVA Parameterization

Basic ANOVA Analysis
The Linear Model ANOVA Parameterization

> anova(lm(Blood.Pressure ~ Drug + Biofeedback + Drug:Biofeedback,

+ data = bp))

Analysis of Variance Table

Response: Blood.Pressure

Df Sum Sq Mean Sq F value Pr(>F)

Drug 1 720 720.0 11.52 0.003706 **

Biofeedback 1 500 500.0 8.00 0.012109 *

Drug:Biofeedback 1 320 320.0 5.12 0.037917 *

Residuals 16 1000 62.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Basic ANOVA Analysis The Linear Model ANOVA Parameterization

Basic ANOVA Analysis
The Linear Model ANOVA Parameterization

An alternative way of entering a model that includes all possible
interactions among its factors to enter the design in complete factorial
notation as Drug ∗ Biofeedback. If the model is entered this way, it is not
necessary to enter the interaction term explicitly.
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Basic ANOVA Analysis The Linear Model ANOVA Parameterization

Basic ANOVA Analysis
The Linear Model ANOVA Parameterization

> anova(lm(Blood.Pressure ~ Drug * Biofeedback, data = bp))

Analysis of Variance Table

Response: Blood.Pressure

Df Sum Sq Mean Sq F value Pr(>F)

Drug 1 720 720.0 11.52 0.003706 **

Biofeedback 1 500 500.0 8.00 0.012109 *

Drug:Biofeedback 1 320 320.0 5.12 0.037917 *

Residuals 16 1000 62.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Simple Main Effects Calculation

Simple Main Effects Calculation

To perform the analysis without using the error term from the complete
two-way analysis, we simply set up a 1-Way ANOVA on the data for which
Biofeedback == Present.

> anova(lm(Blood.Pressure ~ Drug, data = subset(bp, Biofeedback ==

+ "Present")))

Analysis of Variance Table

Response: Blood.Pressure

Df Sum Sq Mean Sq F value Pr(>F)

Drug 1 1000 1000.0 16 0.00395 **

Residuals 8 500 62.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Simple Main Effects Calculation

Simple Main Effects Calculation

To perform the analysis using the error term from the 2-Way Analysis, we
calculate by hand:

> my.F <- 1000/62.5

> my.F

[1] 16

> p.value <- 1 - pf(my.F, 1, 16)

> p.value

[1] 0.001032025

In this case, the error mean square (62.5) was identical for the full and
reducted data sets, so the F statistic remained the same.

This usually will not happen. However, note that the degrees of freedom
for the denominator increased from 8 to 16, resulting in a lower p-value.
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The General Linear Model Cell Means Parameterization

The General Linear Model
Cell Means Parameterization

In the linear model for the 2-way design, there are a levels of factor A, b
levels of factor B, and, as a result, ab populations Ωjk with means µjk
representing the combination of level Aj with level Bk . The n observations
in any particular cell represent a random sample from Ωjk

On pages 201–203 of RDASA3, MWL work through the general linear
model for the 2-way factorial design.

The cell means parameterization is simply

Yijk = µjk + εijk (1)

where the εijk have the distribution

εijk ∼
i .i .d

N(0, σ2
e ) (2)
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The General Linear Model Linear Structural Model Parameterization

The General Linear Model
Linear Structural Model Parameterization

The linear structural model parameterization for ab populations is

Yijk = µ+ αj + βk + (αβ)jk + εijk (3)

where the εijk have the distribution

εijk ∼
i .i .d

N(0, σ2
e ) (4)

and

µ =
∑
j

∑
k

µjk/ab (5)

µj• =
∑
k

µjk/b (6)

µ•k =
∑
j

µjk/a (7)

αj = µj• − µ (8)

βk = µ•k − µ (9)

(αβ)jk = µjk − (µ+ αj + βk) (10)
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Calculating Population Model Coefficients

Calculating Population Model Coefficients

It is instructive to imagine that we actually knew population means for
each cell, and to calculate the parameters of the linear structural model
from those means.
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Calculating Population Model Coefficients

Calculating Population Model Coefficients
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Calculating Population Model Coefficients

Calculating Population Model Coefficients
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Calculating Population Model Coefficients

Calculating Population Model Coefficients
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Source Table and Expected Mean Squares

Source Table and Expected Mean Squares
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The E(MS) Test Construction Principle

The E(MS) Test Construction Principle

Traditional ANOVA texts place considerable emphasis on the derivation of
expressions for the expected values of Mean Squares in various designs.

There are a couple of reasons why this material is important.

A primary reason is that F tests in many ANOVA designs are the ratio of
two mean squares.

Looking at the expected mean squares can tell you which mean squares to
put in the numerator and denominator to test the null hypothesis that an
effect is zero.
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The E(MS) Test Construction Principle

The E(MS) Test Construction Principle

For example, suppose you wish to test the A main effect in a 2-way
ANOVA.

The expected mean square for A is

(MSA) = σ2
e + nbθ2

A (11)

This mean square will go in the numerator, but which value goes in the
denominator?

Ask, “What will (MSA) be if the null hypothesis is true? If the null
hypothesis is true, θ2

A = 0, and so (MSA) = σ2
e .

Can you find another mean square that has that expected value regardless
of whether the null hypothesis is true?

If so, that mean square will go in the denominator.

In this case, consulting the table of expected mean squares, we see that
MSS |AB satisfies that requirements, so the F statistic for testing the A
main effect is F = MSA/MSS|AB .
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Calculations: The Wiley-Voss Example Introduction

Calculations: The Wiley-Voss Example
Introduction

Wiley and Voss (1999) in a Journal of Educational Psychology article,
examined the effect of (a) various learning strategies and (b) the method
of presentation of subject content on the learning of historical subject
matter.

In this example, we use a subset of data, in which the dependent variable
is performance on an Inference Verification Task (IVT) as a function of
instructions given the subjects about how to study.

In the inference verification task, students were asked whether a statement
about subject matter was true on the basis of the information they read.
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Calculations: The Wiley-Voss Example Instruction

Calculations: The Wiley-Voss Example
Instruction

There were 4 types of instructions. All students were presented with a
writing task. The task stated: Historians work from sources including
newspaper articles, autobiographies and government documents like census
reports to create histories. Your task is to take the role of historian and
develop a(n) about what produced the significant changes in
Ireland’s population between 1846 and 1850. Depending on condition,
the blank space was replaced with one of the following 4 words.

1 Narrative (N).

2 Summary (S).

3 Explanation (E).

4 Argument (A).
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Calculations: The Wiley-Voss Example Format of Presentation

Calculations: The Wiley-Voss Example
Format of Presentation

All subjects received historical information about Ireland from 1800 to
1850, including a map, biographical accounts of King George III and
Daniel O’Connell, brief descriptions of the Act of Union, the Act of
Emancipation, and the Great Famine, census population data, and
economic statistics between 1800 and 1850.
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Calculations: The Wiley-Voss Example Format of Presentation

Calculations: The Wiley-Voss Example
Format of Presentation

There were 2 types of content presentations:

1 Web. This was an internet browser-like environment with eight
separate source documents. The environment used in this experiment
was Sourcer’s Apprentice, a program developed by Perfetti and
colleagues (described in Rouet, Britt, Mason, & Perfetti, 1996) as an
aid for history classrooms. Each document is represented as a book,
with a title along the spine. The books are placed on a bookshelf on
the main page of the program. Readers could open up to two source
documents or books at the same time. There were no hypertext links
between documents in this study, and readers could return to the
documents whenever they wished during the writing task. The
average length of each document was around 220 words.

2 Text. presented as a textbook-like chapter (1,571 words). The
information presented was identical in the two formats with the
exception that the textbook format contained an introductory
sentence and some (noncausal) transitional clauses at the beginning
of paragraphs.
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Calculations: The Wiley-Voss Example Main Effects and Interactions

Calculations: The Wiley-Voss Example
Main Effects and Interactions

To analyze the data, we begin by loading in the file. To make the data
more readable, we add “value labels” to the file.

This is always a good idea with qualitative independent variables, because
the procedure demonstrated automatically results in the variables being
“typed” as factors.
> ## Read in data

>

> wiley.voss <- read.csv("wiley0906.csv",header=T,sep=",")

>

> ## Establish Value Labels for Instruction

>

> wiley.voss$Instruction <- factor(wiley.voss$Instruction,

+ levels = c(1,2,3,4),

+ labels = c("Narrative", "Summary", "Explanation","Argument"))

>

> ## Establish Value Labels for Format

>

> wiley.voss$Format <- factor(wiley.voss$Format,

+ levels = c(1,2),

+ labels = c("Text","Web"))
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Calculations: The Wiley-Voss Example Main Effects and Interactions

Calculations: The Wiley-Voss Example
Main Effects and Interactions

Here is an interaction plot.

Taking into account sampling error, how do you interpret this plot? (C.P.)

> with(wiley.voss, interaction.plot(Format, Instruction, IVT,

+ type = "b", col = c("red", "blue", "black", "brown"),

+ pch = 20, lwd = 2))
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Calculations: The Wiley-Voss Example Main Effects and Interactions

Calculations: The Wiley-Voss Example
Main Effects and Interactions

> with(wiley.voss, interaction.plot(Instruction, Format, IVT,

+ type = "b", col = c("red", "blue", "black", "brown"),

+ pch = 20, lwd = 2))
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Calculations: The Wiley-Voss Example Main Effects and Interactions

Calculations: The Wiley-Voss Example
Main Effects and Interactions

Here is a bar plot.

James H. Steiger (Vanderbilt University) 48 / 58



Calculations: The Wiley-Voss Example Main Effects and Interactions

Calculations: The Wiley-Voss Example
Main Effects and Interactions

> anova(lm(IVT ~ Instruction * Format, data = wiley.voss))

Analysis of Variance Table

Response: IVT

Df Sum Sq Mean Sq F value Pr(>F)

Instruction 3 1142.2 380.73 2.4684 0.07139 .

Format 1 689.1 689.06 4.4674 0.03901 *

Instruction:Format 3 529.7 176.56 1.1447 0.33906

Residuals 56 8637.5 154.24

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Effect Size Estimation The RMSSE

Effect Size Estimation
The RMSSE

Steiger (2004) discusses several measures of effect size and their
relationship to each other and the noncentrality parameter λ of the F
statistic used for testing a particular efffect θ. The Root Mean Square
Standardized Effect (RMSSE) is

Ψθ =

√∑
(θ/σ)2

dfθ
(12)

=

√
λθ

nθdfθ
(13)

where is nθ equal to n (the number of observations in each cell of the
design) multiplied by the product of the numbers of levels in all the factors
not represented in the effect currently under consideration; dfθ is the
numerator degrees of freedom parameter for the effect under consideration.
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Effect Size Estimation Partial ω2

Effect Size Estimation
Partial ω2

Partial ω2 for an effect θ is defined as

ω2
θ =

σ2
θ

σ2
θ + σ2

e

(14)

where σ2
θ is the sum of squared effects divided by the number of effects,

i.e., the variance of the effects if they were considered to be a finite
statistical population.
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Effect Size Estimation Cohen’s f

Effect Size Estimation
Cohen’s f

Cohen’s f is defined as

fθ =
σθ
σe

(15)

(16)
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Effect Size Estimation Key Relationships between Effect Size Measures

Key Relationships between Effect Size Measures
Key Relationships between Effect Size Measures

We can switch back and forth between λ, f 2 and ω2 with the formulas

f 2 =
ω2

1 − ω2
=

λ

Ntot
(17)

and

ω2 =
f 2

1 + f 2
=

λ

λ+ Ntot
(18)
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Effect Size Estimation Effect Size Confidence Intervals

Effect Size Estimation
Effect Size Confidence Intervals

We can exploit the relationships described above to construct confidence
intervals on various effect size measures.

Consider the effect of Instruction. The F statistic is 2.4684 with 3 and 56
degrees of freedom.

Because the significance test is one-sided, this confidence interval will
include zero if and only if the F test for no effect rejects at the 0.05 level
of significance.
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Effect Size Estimation Effect Size Confidence Intervals

Effect Size Estimation
Effect Size Confidence Intervals

> library(MBESS)

> out <- conf.limits.ncf(2.4684, 0.9, 3, 56)

> out$Lower.Limit

[1] NA

> out$Upper.Limit

[1] 16.8924

Using MBESS, we quickly obtain a 90% confidence interval for λ that
extends from 0 to 16.8924.

Next, we compute a confidence interval on ω2, using Equation 18. Since
the lower limit on λInstruction is zero, so is the lower limit on ω2

Instruction.
The upper limit is

ω2
Instruction,Upper =

16.8924

16.8924 + 64
= 0.2088 (19)

So the confidence interval ranges from 0 to 0.2088. The effect is at best
small.
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Effect Size Estimation Effect Size Confidence Intervals

Effect Size Estimation
Effect Size Confidence Intervals

In a similar vein, we can calculate ω2 confidence intervals for the Format
main effect and Instruction : Format interaction as ranging from 0.0018 to
0.1826 and from 0 to 0.1299.

In spite of the appearance of the interaction plot, it seems there is no
interaction.
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Power Calculations

Power Calculations

However, a cautionary note is in order. It is often the case that power to
detect interaction effects is significantly lower than the power to detect
main effects in the same design.

To calculate power in this design, we make use of the results in Steiger
(2004). Equation 19 in that article states the relationship between λ, the
noncentrality parameter of the noncentral F distribution, and Cohen’s f
and the RMSSE Ψ. Rearranging that equation gives, for any effect θ,

λθ =
NtotΨ

2
θdfθ

Cellsθ
= Ntot f

2
θ (20)
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For any main effect, Cellsθ is the number of levels of the effect, and for any
interaction effect, Cellsθ is the number of cells involved in the interaction.

Power analysis reveals that there is indeed much lower power to detect an
interaction effect than there is to detect a main effect in this design.

Specifically, if the RMSSE is 0.50 for all three effects, the power for the
three effects is 0.81 for Instruction, 0.79 for Format, and only 0.49 for the
interaction effects.

To calculate power, we simply use Equation 20 to compute λ, and then
effortlessly compute power in one line.

For example, for the main effect of Instruction, there are 4 levels, so
Cellsθ = 4, dfθ = 3,Ntot = 64.

Hence,

λ =
Ψ2Ntotdf

Cells
=

0.25 × 64 × 3

4
= 12 (21)

Power is then the area to the right of the rejection point in a noncentral F
with noncentrality parameter 12, which is

> 1 - pf(qf(0.95, 3, 56), 3, 56, 12)

[1] 0.8112157
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