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1. Goals for this Module

In this module, we will present the following topics

1. Random variables

2. Probability distribution

3. The expected value of a random variable

(a) The discrete case

(b) The continuous case

4. Functions of a random variable

5. The algebra of expected values

6. Variance of a random variable

7. Bivariate distributions

8. Covariance and correlation for two random variables
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2. Random Variables

In many situations, it is cumbersome to deal with outcomes in their origi-
nal form, so instead we assign numbers to outcomes. This allows us to deal
directly with the numbers. This usually is more convenient than dealing
with the outcomes themselves, because, in our culture, we have so many
re�ned mechanisms for dealing with numbers. Perhaps the simplest ex-
ample is when we are talking about the outcome of a coin toss. Instead
of dealing with �Heads� and �Tails,� we instead deal with a numerical
coding like �1�and �0.�The coding rule that uniquely assigns numbers to
outcomes is called a random variable, and is de�ned as follows

De�nition 2.1 A random variable is a function from a sample space 

into the real numbers.

Interestingly, a random variable does not, in itself, have any random-
ness. It is simply a coding rule. When a probabilistic process generates an
outcome, it is immediately coded into a number by the random variable
coding rule. The coding rule is �xed. The randomness observed in the
numbers ��ows through� the outcomes into the numbers via the coding
rule. An example should make this clear.
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Example 2.1 (Summarizing the Results of Coin Tossing) Suppose
you toss a fair coin 2 times and observe the outcomes. You then de�ne
the random variable X to be the number of heads observed in the 2 coin
tosses. This is a valid random variable, because it is a function assigning
real numbers to outcomes, as follows

Table 1: A simple random variable
Outcome (in 
) HH HT TH TT
Value of X 2 1 1 0

Like all functions, a random variable has a range, which is the set of all
possible values (or realizations) it may take on. In the above example, the
range of the random variable X is R(X) = f0; 1; 2g. Notice that, although
the 4 outcomes in 
 are equally likely (each having probability 1=4), the
values of X are not equally likely to occur.
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3. Discrete Probability Distributions

A probability distribution for a discrete random variable X is de�ned for-
mally as follows

De�nition 3.1 The probability distribution function PX for a discrete
random variable X is a function assigning probabilities to the elements of
its range R(X).

Remark 3.1 If we adopt the notation that large letters (like X) are used
to stand for random variables, and corresponding small letters (like x)
are used to stand for realized values (i.e., elements of the range of) these
random variables, we see that PX(x) = Pr(X = x).
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Example 3.1 (A Simple Probability Distribution) Consider the ran-
dom variable X discussed in Table 1 in the preceding example. The prob-
ability distribution of X is obtained by collating the probabilities for the 3
elements in R(X); as follows

Table 2: Probability distribution for the random variable of Table 1
x PX(x)
2 1=4
1 1=2
0 1=4
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Example 3.2 (Simulating a Fair Coin with a Fair Die) Suppose
you throw a fair die, and code the outcomes as in the table below

Outcome (in 
) 1 2 3 4 5 6
Value of X 1 0 1 0 1 0

The random variable X would then have the probability distribution shown
in the following table

x PX(x)
1 1/2
0 1/2
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4. Expected Value of a Random Variable

The expected value, or mean of a random variable X; denoted E(X) (or,
alternatively, �X), is the long run average of the values taken on by the
random variable. Technically, this quantity is de�ned di¤erently depending
on whether a random variable is discrete or continuous. For some random
variables, E (jXj) =1; and we say that the expected value does not exist.

4.1. The Discrete Case

Recall that, in the case of a frequency distribution where the observed
variable takes on k distinct values Xi with frequencies fi, the sample mean
can be computed directly by

X� =
1

N

kX
i=1

Xifi
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This can also be written

X� =
1

N

kX
i=1

Xifi

=
kX
i=1

Xi
fi
N

=
kX
i=1

Xiri

where the ri represent relative frequencies.
Thus the average of the discrete values in a sample frequency distrib-

ution can be computed by taking the sum of cross products of the values
and their relative frequencies. The expected value of a discrete random
variable X is de�ned in an analogous manner, simply replacing relative
frequencies with probabilities.

De�nition 4.1 (Expected Value of a Discrete Random Variable)
The expected value of a discrete random variable X whose range R(X) has
k possible values xi is
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E(X) =
kX
i=1

xi Pr(X = xi)

=
kX
i=1

xiPX(xi)

An alternative notation seen in mathematical statistics texts is

E(X) =
X

xi2R(X)

xiPX(xi)

Example 4.1 (Expected Value of a Fair Die Throw) When you
throw a fair die, the probability distribution for the outcomes assigns uni-
form probability 1=6 to the outcomes in R(X) = f1; 2; 3; 4; 5; 6g . To ex-
pected value can be calculated as in the following table.

x PX (x) xPX(x)
6 1=6 6=6
5 1=6 5=6
4 1=6 4=6
3 1=6 3=6
2 1=6 2=6
1 1=6 1=6

21=6 = 7=2
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A fair die has an expected value of 3:5, or 7=2.

4.2. The Continuous Case

For continuous random variables, the probability of an individual outcome
in R(X) is not de�ned, and R(X) is uncountably in�nite. The expected
value is de�ned as the continuous analog of the discrete case, with the
probability density function f(x) replacing probability, and integration
replacing summation.

De�nition 4.2 (The Expected Value of a Continuous Random Vari-
able) The expected value of a continous random variable X having proba-
bility density function f(x) is

E(X) =

Z 1

�1
x f(x) dx

http://www.statpower.net
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5. Functions of a random variable

Recall that the random variable X is a function, a coding rule. Conse-
quently, functions g(X) of X will also be random variables, and have a
distribution of their own. However, the range of g(X) will frequently be
di¤erent from that of X. Consider the following example:

Example 5.1 (A Function of a Random Variable) Let X be a dis-
crete uniform random variable assigning uniform probability 1=5 to the
numbers �1, 0, 1, 2, 3. Then Y = X2 is a random variable with the
following probability distribution

y PY (y)
9 1=5
4 1=5
1 2=5
0 1=5

Note that the probability distribution of Y is obtained by simply col-
lating the probabilities for each value in R(X) linked to a value in R(Y ).
However, computing the expected value of Y does not, strictly speaking,
require this collation e¤ort. That is, the expected value of Y = g(X) may
be computed directly from the probability distribution of X, without ex-
tracting the probability distribution of Y . Formally, the expected value of
g(X) is de�ned as follows
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De�nition 5.1 (The Expected Value of a Function of a Random
Variable) The expected value of a function g(X) of a random variable X
is computed, in the discrete and continuous cases, respectively, as

E (g (X)) =
X

xi2R(X)

g(xi)PX(xi) (1)

and

E (g (X)) =

Z 1

�1
g(x) f(x) dx

Example 5.2 (Expected Value of the Square of a Die Throw) Con-
sider once again the random variable X representing the outcomes of a
throw of a fair die, with R(X) = f1; 2; 3; 4; 5; 6g. In the table below, we
compute the expected value of the random variable X2:

x x2 PX(x) x2PX (x)
6 36 1=6 36=6
5 25 1=6 25=6
4 16 1=6 16=6
3 9 1=6 9=6
2 4 1=6 4=6
1 1 1=6 1=6

91=6
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5.1. The Algebra of Expected Values

Theorem 5.1 (Expectation of a Linear Transform) Consider linear
functions aX + b of a discrete random variable X. The expected value of
the linear transform follows the rule

E (aX + b) = aE(X) + b

Proof. Eschewing calculus, we will prove only the discrete case. From
Equation 1, the basic rules of summation algebra, and the fact that the
sum of PX(xi) over all values of xi is 1, we have

E(aX + b) =
X

xi2R(X)

(axi + b)PX(xi)

=
X

xi2R(X)

axi PX(xi) +
X

xi2R(X)

b PX(xi)

= a
X

xi2R(X)

xi PX(xi) + b
X

xi2R(X)

PX(xi)

= aE(X) + b(1)

= aE(X) + b
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The result of Theorem 5.1 is precisely analogous to the earlier result
we established for lists of numbers, and summarized in the �Vulnerabil-
ity Box.�That is, multiplicative constants and additive constants come
straight through in the expected value, or mean, of a random variable.
This result includes several other results as special cases, and these deriv-
ative rules are sometimes called �The Algebra of Expected Values.�

Corollary 5.1 The Algebra of Expected Values For any random vari-
able X, and constants a and b, the following results hold

E(a) = a (2)

E(aX) = aE(X) (3)

E(X + Y ) = E(X) + E(Y ) (4)

Note that these results are analogous to the two constant rules and the
distributive rule of summation algebra.

5.2. Expected Value of a Linear Combination

The expected value of a linear combination of random variables behaves
the same as the mean of a linear combination of lists of numbers.

http://www.statpower.net
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Proposition 5.1 (Mean of a Linear Combination of Random Vari-
ables) Given J random variables Xj, j = 1; : : : J , with expected values �j.
The linear combination � =

PJ
j=1 cjXj has expected value given by

�� = E(�) =
JX
j=1

cj�j
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6. Variance of a Random Variable

Deviation scores for a random variable X are de�ned via the deviation
score random variable dX = X�E(X):A random variable is said to be in
deviation score form if it has an expected value of zero. The variance of
a random variable X is the expected value of its squared deviation scores.
Formally, we say

De�nition 6.1 (Variance of a Random Variable) The variance of a
random variable X is de�ned as

V ar(X) = �2X = E(X � E(X))2 = E (X � �X)
2 = E

�
dX2

�
Just as we usually prefer a computational formula when computing

a sample variance, we also often prefer the following alternative formula
when computing the variance of a random variable. This formula can be
proven easily using the algebra of expected values.

Proposition 6.1 (Variance of a Random Variable) The variance of
a random variable X is equal to

V ar(X) = �2X = E
�
X2
�
� (E (X))2 (5)

In the following example, we demonstrate both methods for computing
the variance of a discrete random variable.
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Example 6.1 (The Variance of a Fair Die Throw) Consider again
the random variable X representing the 6 outcomes of a fair die throw. We
have already established in Example 4.1 that E(X) = 7=2 and in Example
5.2 that E(X2) = 91=6:Employing Equation 5, we have

V ar(X) = E
�
X2
�
� (E (X))2

= 91=6� (7=2)2

= 364=24� 294=24
= 70=24

= 35=12

Alternatively, we may calculate the variance directly

x PX(x) x� E(X) (x� E (X))2 (x� E (X))2 PX(x)
6 1=6 5=2 25=4 25=24
5 1=6 3=2 9=4 9=24
4 1=6 1=2 1=4 1=24
3 1=6 �1=2 1=4 1=24
2 1=6 �3=2 9=4 9=24
1 1=6 �5=2 25=4 25=24

70=24 = 35=12

The sum of the numbers in the far right column is �2X :
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6.1. Z-Score Random Variables

Random variables are said to be in Z-score form if and only if they have
an expected value (mean) of zero and a variance of 1. A random variable
may be converted into Z-score form by subtracting its mean then dividing
by its standard deviation, i.e.,

ZX =
X � E(X)p
V ar (X)

=
X � �X
�X
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7. Random Vectors and Multivariate Prob-
ability Distributions

The random vector is a generalization of the concept of a random variable.
Whereas a random variable codes outcomes as single numbers by assign-
ing a unique number to each outcome, a random vector assigns a unique
ordered list of numbers to each outcome. Formally, we say

De�nition 7.1 (Random Vector) An n-dimensional random vector is
a function from a sample space 
 into <n, n-dimensional Euclidean space.

The bivariate random vector (X; Y ) assigns pairs of numbers to out-
comes. For many practical purposes, we can simply consider such a ran-
dom vector as the outcome of observations on two variables. Earlier we
discussed the bivariate frequency distribution of X and Y , which assigned
probability to ordered pairs of observations on X and Y . There is a similar
notion for discrete random variables. We use the notation PX;Y (x; y) to
indicate Pr(X = x \ Y = y). The range R(X; Y ) of the random vector is
the set of all possible realizations of (X; Y ) Terms that we de�ned previ-
ously, the conditional distribution, and the marginal distribution, are also
relevant here.

Example 7.1 (A Bivariate Probability Distribution) Suppose you
toss 2 coins, X and Y;and code the outcomes 1 = H, 2 = T . Suppose the 4
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possible outcomes on the random vector (X; Y ) and their probabilities are
shown in the bivariate probability distribution table below. (Note that the
coins behave in a peculiar manner. They are perfectly correlated!)

Table 3: A Bivariate Discrete Probability Distribution
(x; y) PX;Y (x; y)
(1; 1) 1=2
(1; 2) 0
(2; 1) 0
(2; 2) 1=2

7.1. Functions of a Random Vector

You can de�ne new random variables that are functions of the random
variables in a random vector. For example, we can de�ne the random
variable XY , the product of X and Y . This new random variable will
have a probability distribution that can be obtained from the bivariate
distribution by collating and summing probabilities. For example, to ob-
tain the probability that XY = 1, one must sum the probabilities for all
realizations (x; y) where xy = 1.
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Example 7.2 (The Product of Two Random Variables) Consider
again the bivariate distribution of X and Y given in Table 3. The distri-
bution of the random variable W = XY is given in the table below. Note
in passing that E (XY ) = 5=2

w PW (w)
4 1=2
1 1=2

7.2. Marginal Distributions

We may extract marginal distributions from the multivariate distribution.
For example, the marginal distributions PX(x) and PY (y) of X and Y can
be extracted from PX;Y (x; y) by summation. For example, to calculate
PX(1) = Pr(X = 1), we simply observe all realizations (x; y) where x = 1,
and sum their probabilities. Formally, we say, for a particular value x�,

PX(x
�) =

X
(x�;y)2R(X;Y )

PX;Y (x
�; y)

If we do this for all possible values that X may take on, we obtain the
marginal distribution. For example, the marginal distribution of X for the
bivariate distribution in Table 3 is
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Table 4: Marginal Distribution of X
x PX (x)
2 1=2
1 1=2

7.3. Conditional Distributions

The conditional distribution of Y given X = a is denoted PY jX=a (y). It
is computed by collating only those observations for which X = a, and
restandardizing the probabilitities so that they add to 1. Thus, we have

PY jX=a (y) =
Pr (Y = y \X = a)

Pr(X = a)
=
PX;Y (a; y)

PX(a)

7.4. Independence of Random Variables

Solution 7.1 Two random variables are independent if their conditional
and marginal distributions are the same, so that knowledge of the status of
one variable does not change the probability structure for the other.

De�nition 7.2 (Independence of Random Variables) Two random
variables X and Y are independent if, for all realized values of X,

PY jX=a(y) = PY (y)
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or, equivalently
PX;Y (x; y) = PX (x)PY (y)

Remark 7.1 If X and Y are independent, then

E(XY ) = E(X)E(Y )

However it is not the case that if X and Y are independent, E(X=Y ) =
E(X)=E(Y ):This incorrect supposition is at the heart of a number of er-
roneous results from some surprisingly authoritative source. For example,
in the analysis of variance, we calculate an F statistic as

F =
MSbetween
MSwithin

Although MSbetweenand MSwithin are independent, it is not the case that
E(F ) = E(MSbetween)=E(MSwithin), despite the fact that several textbooks
on analysis of variance (including the classic by Winer) state this.
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8. Covariance and Correlation for Two Ran-
dom Variables

The covariance of two random variables X and Y is de�ned as the average
cross-product of deviation scores. Speci�cally,

De�nition 8.1 (Covariance of Two Random Variables) The co-
variance between two random variables X and Y is de�ned as

Cov(X; Y ) = �XY = E[ (X � E (X)) ( Y � E (Y )) ]

The covariance may also be computed as

Cov(X; Y ) = �XY = E (XY )� E (X)E (Y )

The correlation between two random variables X and Y is

Corr(X; Y ) = �X;Y = E(ZXZY ) =
�X;Y
�X�Y

Example 8.1 (Covariance and Correlation of Two Random Vari-
ables) Consider again the two strange coins in Table 3. X and Y each has
the same marginal distribution, taking on the values 1 and 2 with proba-
bility 1=2: So E(X) = E(Y ) = 3=2. We also have E(X2) = E(Y 2) = 5=2,
so

�2X = E
�
X2
�
� [E (X)]2 = 5=2� (3=2)2 = 10=4� 9=4 = 1=4 = �2Y
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and
�X = �Y = 1=2

To calculate the covariance, we need E(XY );which, as we noted in Exam-
ple 7.2, is 5=2. The covariance may be calculated as

Cov (X; Y ) = �X;Y = E (XY )� E (X)E (Y ) = 5=2� (3=2) (3=2) = 1=4

The correlation between X and Y , not surprisingly, turns out to be 1, i.e.,

Corr (X; Y ) =
�X;Y
�X�Y

=
1=4

(1=2) (1=2)
= 1

8.1. Variance and Covariance of Linear Combinations

The variance and covariance of linear combination(s) of random variables
show the same behavior as a the corresponding quantities for lists of num-
bers. Simply apply the same heuristic rules as before.

Example 8.2 Suppose A = X + Y and B = X � Y . Then

�2A = �
2
X + �

2
Y + 2�X;Y

�2B = �
2
X + �

2
Y � 2�X;Y

and
�A;B = �

2
X � �2Y
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