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Introduction

Introduction

In statistics, we use numbers to represent quantities.

Often we approach this process informally, without thinking about it
too deeply.
In this module, we want to take another look at some fundamental
questions:

What’s in a list of numbers?
What happens to the information in a list of numbers when we
transform a list?
Is some information especially vulnerable?
Is some information especially robust?
Is some information arbitrary?
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Introduction

Introduction

At the outset, we shall take a simple, visual approach to addressing
these questions.

However, we shall discover that this “simplicity” allows us to see the
concepts underlying some familiar statistical formulas.
This discovery is typical of much of statistics: complex-looking
formulas can mask some powerful yet simple underlying concepts.
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The Number Line Diagram

The Number Line Diagram

This is a simple device for visual display of one or more lists of
numbers.

The numbers are listed from left to right, with spacing appropriate for
a linear scale.
Using the number line diagram, we can see things that may not
otherwise be obvious.
Here is a diagram of the list of numbers 1,2,4.

1 2 4

Here is a diagram of two lists.

1 2 4

1 2 6
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Listwise Operations Introduction

Listwise Operations

We are going to ask a fundamental question: What happens to a list
of numbers when we apply the same transformation to every number
in the list?

For example, what happens to a list of numbers if we add 2 to every
number in the list?
Such an operation, applied to every number in the list, is called a
listwise operation.
Often, we can use a simple equation to indicate a listwise operation.
For example,

Y = X + 2 (1)

means “add 2 to every number in the X list to create a new list,
called Y .
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Listwise Operations Effect of Listwise Operations

Effect of Addition

If we add a constant to every number in a list, what is the effect on
the list?

Visualization can help us organize our thinking.
Let’s take the simple list 1, 2, 4 and add 2 to every number in the list.
Let’s look at the number line diagrams.

1 2 4

3 4 6

Can you describe what you see?
What changed about the numbers?
What did not change?
What about subtracting a number from every number in a list?
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Listwise Operations Effect of Listwise Operations

Listwise Multiplication (or Division)

Let’s take the same original list, 1, 2, 4, and now multiply all the
numbers by a constant.

For now, we will restrict ourselves to positive multipliers.
Suppose the listwise transformation formula is

Y = 2X (2)

1 2 4

2 4 8
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Listwise Operations Effect of Listwise Operations

Listwise Multiplication (or Division)

What changed?

What remained the same?
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Listwise Operations Effect of Listwise Operations

An Aside

The question of what does not change during statistical operations
occurs during the investigation of what we call invariance properties.

Asking questions about invariance can sometimes produce profound
insights.
For example, Einstein mused that ”Relativity Theory” might better
have been called ”Invariance Theory,” since fundamentally, it dealt
with what remained invariant in the space-time continuum.
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Listwise Operations Effect of Listwise Operations

Summary

There are many ways to state what we have observed informally here.

One way to summarize is to say that:

Listwise addition or subtraction moves the numbers as a group, as
though they were mounted on a rigid stick, and slid to the left or right.
Listwise addition does not change any of the distances between
numbers.
Listwise multiplication or division by a positive number can move the
numbers as a group, but also causes them to ”fan in” or ”fan out.”
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Re-Expressing the Information in a List Introduction

Introduction

In this section, we discover that all the information in a list of N
numbers can be re-expressed in terms of N new numbers.

These new numbers contain all the information in the original list,
and the original list can be reconstructed perfectly from these new
numbers.
However, by recasting the information in this new form, we can get a
better “handle” on what information is really contained in a list of
numbers, and what the invariance properties are.
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Re-Expressing the Information in a List Introduction

Introduction

Our N new numbers will be the following:

1 measure of Location (or Central Tendency)
1 measure of Spread (or Variability)
N − 2 measures of Shape

We shall use simple measures of Location, Spread, and Shape in
deriving a number of important principles.
But it turns out that these principles hold for any reasonable
measures of these three quantities.
These principles will allow us to say all kinds of interesting things
about statistics while doing virtually no mathematics!
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Re-Expressing the Information in a List Location

Location

A measure of location or central tendency answers questions like the
following:

In what general region is the list located on the number line?
What number is typical of the entire list?
What number is in the center of the list?

Later on, we’ll get more formal about measures of location.
For now, we’ll adopt a really simple measure of location — the middle
value in the list. We’ll call it M.
If the number of numbers (N) is odd, the median is simply the middle
value.
If the number of numbers is even, we will define the median as the
average of the two middle values, i.e., a point halfway between the
two middle values on the number line.
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What number is in the center of the list?

Later on, we’ll get more formal about measures of location.
For now, we’ll adopt a really simple measure of location — the middle
value in the list. We’ll call it M.

If the number of numbers (N) is odd, the median is simply the middle
value.
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Re-Expressing the Information in a List Spread

Spread

Measures of spread, or variability, assess how far the list is spread out
over the number line.

In our discussions, we will use a very simple measure of spread, the
range, which is the difference between the highest and lowest number
in the list.
We will use the letter S (for spread) to stand for the range.
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Re-Expressing the Information in a List Shape

Shape

Shape of a list of numbers is the pattern of relative interval sizes,
moving from left to right.

Consider the list 20, 30, 40, 60, 65
We can compute the unscaled distances between the numbers as
10,10,20,5.
The relative distances are obtained by dividing all the unscaled
distances by the first nonzero value.
The resulting Shape parameters are 1, 1, 2, 0.5
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Re-Expressing the Information in a List Shape

Shape

To test yourself, answer the following. What are the Shape
parameters for:

1, 2, 3, 6, 10
2, 4, 6, 12, 20
13, 16, 19, 28, 40
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Effect of Listwise Operations

Effect of Listwise Operations

Now I have a serious question for you. Why would we want to
re-express a list of numbers in terms of Location, Spread, and Shape?

That’s actually a pretty profound question, so let’s jump past it and
ask some more basic questions (C.P.):

What is the effect of listwise addition(subtraction) on Location,
Spread, and Shape?
What is the effect of listwise multiplication (division) by a positive
number on Location, Spread, and Shape?
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Effect of Listwise Operations

The Vulnerability Box

Let’s present our results in a summary table I’ll refer to as The
Vulnerability Box. (Einstein would probably call it the Invariance
Box.)

Operation Effect on

Location Spread Shape

+ +
− −
× × ×
÷ ÷ ÷
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Exploiting the Vulnerability Box

Exploiting the Vulnerability Box
Some Examples

Tracking changes in a list of numbers

Rescaling numbers (Changing the Location and/or Spread without
affecting Shape).
Deriving statistical theory.
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Exploiting the Vulnerability Box Tracking Changes

Tracking Changes
Effect on Location and Spread

The Vulnerability Box can be used to examine any operation that can
be expressed as a sequence of listwise additions, subtractions,
multiplications, and/or divisions.

That takes in a lot more territory than it might seem.
Suppose you have a list of X ’s with a Location of 75 and a Spread of
20. What will the Location and Spread become if you convert them
to Y ’s with this formula?

Y = 4

(
2X + 30

20

)
+ 2 (3)

How about Spread?
What about Shape?
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Exploiting the Vulnerability Box Tracking Changes

Solutions

Location starts at 75. All listwise operations affect location: Multiply
by 2 (75× 2 = 150 ), Add 30 (180), Divide by 20 (9), Multiply by 4
(36), Add 2 (38).

Spread starts at 20. Only multiplication or division listwise operations
affect spread: Multiply by 2 (40), Add 30 (no change 40), Divide by
20 (2), Multiply by 4 (8), Add 2 (no change 8).
Shape will stay the same.
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Exploiting the Vulnerability Box Rescaling Numbers

Rescaling Numbers

Often we will find ourselves with a set of numbers that has an
appropriate Shape, but an inappropriate Location and/or Spread.

The classic example is a set of course grades that result from an exam
that is fundamentally well structured, but too difficult (or perhaps too
easy).
For example, I give an exam and the Location is M = 50, and the
Spread is S = 40, while a more typical set of grades would be M = 80
and S = 20.
What can I do?
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Exploiting the Vulnerability Box Rescaling Numbers

Rescaling Numbers

One thing we have learned from the Vulnerability Box is that so long
as we multiply (or divide) by a positive number, and add or subtract
any number, the Shape of the grades will not change.

A bit later, we will discover that when grades are “at an interval level
of measurement,” the Shape has all the information in the numbers
that is not arbitrary, and that the Location and Spread are in fact
arbitrary.
Assuming our grades are at an interval level of measurement, we are
now going to adjust the Location and Spread to values that are
“culturally appropriate.”
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Exploiting the Vulnerability Box Rescaling Numbers

Rescaling Numbers

If you stare at the Vulnerability Box long enough, you will notice that
the stair-step shape of the filled boxes is telling you something
important.

Specifically, if you first adjust Spread by using multiplication, you can
then adjust Location using addition/subtraction without changing
Spread or Shape, thereby ending up with numbers with the same
Shape you started with, but with exactly the Location and Spread you
want.
Let’s see how this works.
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Exploiting the Vulnerability Box Rescaling Numbers

Rescaling Numbers

We start with numbers with M = 50, and the spread is S = 40, while
what we want is the “culturally appropriate metric” of M = 80 and
S = 20.

We want to adjust the Spread first. It is currently 40, and we want
20. The lesson of the Vulnerability Box is that multiplication “comes
straight through in the Spread and Location.”
So, if we multiply all the numbers by 1/2, we will multiply both the
Spread and Location by 1/2. So if we started with numbers with
M = 50 and S = 40, we will now have numbers with M = 25 and
S = 20, and this set of numbers will have the same Shape as when
we started.
We can then adjust the Location to M = 80 by adding 55 to all the
numbers. This will not change the Spread, and will result in a set of
numbers with the same Shape as the original numbers, but a
Location of 80 and a Spread of 20.
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Exploiting the Vulnerability Box Rescaling Numbers

Rescaling Numbers

Example (Rescaling Numbers)

We start with 30,50,70. By our current primitive measures of Location and
Spread, these three evenly spaced numbers have a Location of 50 and a
Spread of 40.

After multiplying by 1/2, we have three numbers 15,25,35 that have the
desired Spread of 20, and are still evenly spaced.

Notice that the Location has changed, to (1/2)× 50 = 25. We want it to
be 80. So we must add the difference between where we are (25) and
what we want (80), i.e., 80− 25 = 55.

After adding 55, we have 70,80,90.

James H. Steiger (Vanderbilt University) Key Concepts in Descriptive Statistics 27 / 44



Exploiting the Vulnerability Box Rescaling Numbers

Developing a Rescaling Formula

The fundamental idea behind rescaling is to:

1 Adjust Spread with multiplication/division.
2 Examine where the Location has moved to, and calculate how far it is

from the desired value.
3 Adjust the Location with addition/subtraction.

We can turn these informal ideas into a formal “prescription” or “set
of formulas” for accomplishing linear rescaling.
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Exploiting the Vulnerability Box Rescaling Numbers

Developing a Rescaling Formula

Let the multiplicative constant be designated as a, the additive
constant b.

Define Mx , Sx to be the current metric, My , Sy to be the desired
metric.
We know that, in order to adjust the Spread, we need to multiply by
Sy/Sx , the ratio of the desired Spread over the current Spread.
Once we multiply the X values by a = Sy/Sx , the Spread will become
aSx = (Sy/Sx)Sx = Sy , and the Location will become aMx .
If we then add My − aMx , the Location will become
aMx + (My − aMx) = My , and we will have accomplished our
objective.
So the “prescription for linear rescaling is Y = aX + b, where
a = Sy/Sx , and b = My − aMx .
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Exploiting the Vulnerability Box Deriving Statistical Theory

Deriving Statistical Theory

The Vulnerability Box rules work for concrete lists of numbers, but
they also work in more abstract circumstances.

Consider the following example:

You have a set of numbers X with Location Mx and Spread Sx that is
not zero.
You transform them all via the following formula

Zx =
X −Mx

Sx
(4)

What will be the Location, Spread, and Shape of the new numbers?
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Exploiting the Vulnerability Box Deriving Statistical Theory

Deriving Statistical Theory

To derive the answer, we first recognize that the Shape of the
numbers will not change, since the transformation can be viewed as a
subtraction followed by a division, and the divisor is always positive.

We can deduce the Location and Spread of the numbers by simply
applying the Vulnerability Box rules.
We start with Mx and Sx , and subtract Mx from all the numbers.
The Vulnerability Box tells us that this will not affect the Spread,
which will stay at Sx , while the Location will change to Mx −Mx = 0.
We now have numbers with a Location of 0 and a Spread of Sx . If we
divide them all by Sx , we will divide both the Location and Spread by
Sx . The result is that the Location will be 0/Sx = 0, and the Spread
will be Sx/Sx = 1.
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Exploiting the Vulnerability Box Deriving Statistical Theory

Deriving Statistical Theory

We have proven that for any list of numbers with non-zero spread,
the “Z -score transformation” produces numbers with the same Shape
as the original numbers, but a Location of 0 and a Spread of 1.
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Properties of Z -Scores

Properties of Z -Scores

If a set of numbers has a Location of 0 and a Spread of 1, we say that
they are (according to whatever the current (fixed) definitions of
Location and Spread might be) “in Z -score form.”

Consider the following question. Suppose a set of numbers is in
Z -score form. Suppose we define the “metric of the numbers” to be
their Location and Spread.
How can we transform these Z -scores into any other desired metric?
Let’s consider the Spread first. It is currently 1. We want it to be
something else. What do we need to do to the numbers to change
the Spread to that “Something Else”? (Answer from C.P.)
Will the Location have changed? No, it is still zero. So what do we
need to do to the numbers to adjust the Location to something else?
(Answer from C.P.)
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Properties of Z -Scores

Properties of Z -Scores

That’s right, to transform Z − scores into any desired metric, multiply
them by the desired Spread, and then add the desired Location.

Let’s try to get a conceptual handle on what that means.
First of all, in an algebraic sense, we might say that the result is
obvious.
Algebraically, if

Zx =
X −Mx

Sx
(5)

then, of course
X = SxZx + Mx (6)
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Properties of Z -Scores

Properties of Z -Scores

Notice that Z -scores, in an important sense, “remove the metric”
from a set of numbers, or at least establish a very convenient fixed
metric.

A somewhat more subtle property is that Z-scores for a list of
numbers are invariant under any linear rescaling of the raw scores.
What did I mean by that? (C.P. and Demo)
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Properties of Z -Scores

Properties of Z -Scores
The Linear Transformation

A positive linear transformation of a set of scores X into a new set of
scores Y can be written as

Y = aX + b (7)

Any sequence of additions, subtractions, multiplications, or divisions
by positive numbers can be expressed as a single linear transformation
of the form Y = aX + b.
Suppose for example, we have a set of numbers and multiply them all
by d , subtract e from all of them, divide all those numbers by f , and
add g to all the resulting numbers.
We can express that sequence as

Y =
dX − e

f
+ g

=
d

f
X − e

f
+ g

=
d

f
X + (g − e

f
)

So when I said “linear rescaling” in the previous slide, I simply meant
any sequence of additions, subtractions, multiplications, or divisions
by positive numbers.
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Properties of Z -Scores

Three Evenly Spaced Numbers

Remember that all the properties of the Vulnerability Box and
Z -scores hold for any reasonable measures of Location, Spread, and
Shape, so long as you keep the definition consistent within the
discussion.

For reasons that will become obvious a little later, I want to restrict
our next few discussion points to sets of 3 evenly spaced numbers.
Moreover, for sets of 3 evenly spaced numbers, I’m going to define
Location as before (i.e., the middle value), but I’m going to redefine
the Spread S to be the inter-number spacing.
By these new definitions, the set of X numbers 70,80,90 has Location
80 and Spread 10.
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Properties of Z -Scores

Properties of Z -Scores

So, in effect, linear rescaling “puts the metric into” a list of numbers,
while Z -scoring removes it.

Let’s look at a simple example of “invariance of Z -scores under linear
transformation.”
Consider the X list 70,80,90.
If we convert these numbers to Z -scores (using our new definition of
spread) by subtracting 80 and dividing by 10, we get −1, 0,+1.
Now, suppose we were to transform the X numbers into Y by
multiplying by 1.1 and subtracting 9.
What would be the Location and Spread of the Y numbers? (C.P.)
What would be the Z -score values for the Y numbers?
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Properties of Z -Scores

Solutions

The X list is 70,80,90. Since Mx = 80, Sx = 10.

The Zx scores are −1, 0,+1, since (70− 80)/10 = −1,
(80− 80)/10 = 0, and (90− 80)/10 = +1.
The Y scores are 68,79,90, since 1.1× 70− 9 = 68,
1.1× 80− 9 = 79, and 1.1× 90− 9 = 90.
By our revised definitions, these Y scores have a Location of 79, and
a spread of 11.
The scores have changed, but the Zy scores are the same as the Zx

scores!
For example, the first Y score is 68, and it has a Z -score of
(68− 79)/11, or −1.
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Properties of Z -Scores

Properties of Z -scores

The preceding example indicates an even broader principle.

Suppose two lists of numbers of the same length have the same
Shape, the same Location, and the same Spread.
Then, of course, the lists must be identical!
So if two lists of numbers are the same length and have the same
Shape, then if we linearly transform them to have the same metric
(i.e., Location and Spread), then the two lists will be made identical.
This fact is commonly exploited to equalize scores across different
sections of a course.

James H. Steiger (Vanderbilt University) Key Concepts in Descriptive Statistics 40 / 44



Properties of Z -Scores

Properties of Z -scores

The preceding example indicates an even broader principle.
Suppose two lists of numbers of the same length have the same
Shape, the same Location, and the same Spread.

Then, of course, the lists must be identical!
So if two lists of numbers are the same length and have the same
Shape, then if we linearly transform them to have the same metric
(i.e., Location and Spread), then the two lists will be made identical.
This fact is commonly exploited to equalize scores across different
sections of a course.

James H. Steiger (Vanderbilt University) Key Concepts in Descriptive Statistics 40 / 44



Properties of Z -Scores

Properties of Z -scores

The preceding example indicates an even broader principle.
Suppose two lists of numbers of the same length have the same
Shape, the same Location, and the same Spread.
Then, of course, the lists must be identical!

So if two lists of numbers are the same length and have the same
Shape, then if we linearly transform them to have the same metric
(i.e., Location and Spread), then the two lists will be made identical.
This fact is commonly exploited to equalize scores across different
sections of a course.

James H. Steiger (Vanderbilt University) Key Concepts in Descriptive Statistics 40 / 44



Properties of Z -Scores

Properties of Z -scores

The preceding example indicates an even broader principle.
Suppose two lists of numbers of the same length have the same
Shape, the same Location, and the same Spread.
Then, of course, the lists must be identical!
So if two lists of numbers are the same length and have the same
Shape, then if we linearly transform them to have the same metric
(i.e., Location and Spread), then the two lists will be made identical.

This fact is commonly exploited to equalize scores across different
sections of a course.

James H. Steiger (Vanderbilt University) Key Concepts in Descriptive Statistics 40 / 44



Properties of Z -Scores

Properties of Z -scores

The preceding example indicates an even broader principle.
Suppose two lists of numbers of the same length have the same
Shape, the same Location, and the same Spread.
Then, of course, the lists must be identical!
So if two lists of numbers are the same length and have the same
Shape, then if we linearly transform them to have the same metric
(i.e., Location and Spread), then the two lists will be made identical.
This fact is commonly exploited to equalize scores across different
sections of a course.

James H. Steiger (Vanderbilt University) Key Concepts in Descriptive Statistics 40 / 44



Linear Transformation Rules Revisited

Linear Transformation Rules Revisited

If Y = aX + b, then

Sy = |a|Sx
My = aMx + b

These results immediately follow from our Vulnerability Box results,
since a accomplishes multiplication (or division) and b accomplishes
addition (or subtraction).
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Linear Transformation Rules Revisited

Consider the equations from the previous slide.

Sy = |a|Sx
My = aMx + b

If we restrict ourselves to positive values of a, and manipulate a to
the left of the first equation and b to the left side of the second
equation, we obtain the following formulas for calculating a linear
transformation to produce a desired metric:

If a set of scores X currently has a metric Mx ,Sx , and we wish to
linearly transform them via Y = aX + b to a “desired metric” My ,SY ,
the transformation formula must be

a =
Sy
Sx

b = My − aMx

Notice that we actually deduced these formulas earlier in this module
by simply expressing our Vulnerability Box rules in mathematical
notation.
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Summary

Summary

The Vulnerability Box laws are equivalent to the Laws of Linear
Transformation:

1 Addition, subtraction, multiplication and division all “come straight
through” in the Location.

2 Only multiplication and division come straight through in the Spread.
3 So long as the multiplier/divisor is positive, none of the four basic

arithmetic operations affect Shape.
4 In algebraic notation, if Y = aX + b, then My = aMx + b, Sy = |a|Sx .
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Summary

Summary

There are three equivalent approaches to linear rescaling:

1 Informally adjust the Spread with multiplication, then adjust the
Location with addition.

2 Convert the X scores to Z scores first, then multiply by the desired
Spread and add the desired Location.

3 Use the linear transformation rule Y = aX + b, where a = Sy/Sx , and
b = My − aMx .
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