
Lab 4
A Quick Introduction to Simulation

Psychology 310

Instructions. Submit your file as an R Markdown Rmd file.

Preamble. Today’s assignment involves looking at some elementary ap-
proaches to statistical simulation in R. Several problems are given embedded
in the text, and colored red. Please solve these and submit both your answers
and the R code that produced them. Use a random number seed at the start of
each of your answers, so we can replicate your findings if we have any questions.
Use 100,000 replications if you have a fast computer, or some smaller number
(10,000) if you have an older, slower computer.

1 Introduction

In many cases in statistics (and in other areas of science), we have probability
models, but we cannot find “closed form” analytic expressions for the answers
to questions that are of scientific value.

Sometimes the answers exist, but we haven’t found them. In other cases, the
answers do not yet exist, but will be found in the future. In still others, there
will never be a closed form expression for the quantity we are interested in.

In such cases, we have a strategy open to us that can give us answers that
are accurate enough to be useful, and get us out of the bind created by the
unavailability of an analytic answer.

This strategy involves using the computer to simulate observations generated
by our probability model, over, and over, and over. We collect these simulated
observations, and, because of the law of large numbers, we then have an approx-
imation to the probability that we are searching for.

In the following sections, we examine some fundamental strategies for im-
plementing this Monte Carlo strategy.

2 The Tallest Boy

A fundamental situation in statistics is the process of sampling followed by
ordering and selection. For example, we give 100 people a test and then select
the person scoring highest on the test to receive a scholarship.

When sampling is followed by selection of an observation with a particular
rank, the result is called an order statistic. So, the nth order statistic is the
largest observation in a sample of size n.

Order statistic theory is complicated. Whole books are written about it. It

1

gets a whole lot more complicated if the original observations are not indepen-
dent.

Suppose, for the time being, the observations are independent and normal.
Here is a typical problem.

A high school has 400 boys in the 12th grade. The heights of boys that age
have a normal distribution with a mean of 70 and a standard deviation of 3.
What is the expected value of the height of the tallest boy in the class?

This is a problem in order statistic theory. The tallest boy in the class is the
nth order statistic.

We can “build up” a calculation to allow us to simulate the distribution of
the tallest boy.

First, let’s simulate a single class of size 400.

> set.seed(12345)

> one.class <- rnorm(400, 70, 3)

> head(one.class)

[1] 71.76 72.13 69.67 68.64 71.82 64.55

Now let’s select the tallest boy.

> set.seed(12345)

> max(rnorm(400, 70, 3))

[1] 78.24

He’s about 6 feet 6 and a quarter inches. Now, we could simulate a second
class of size 400.

> max(rnorm(400, 70, 3))

[1] 79.99

He’s almost exactly 6 feet 8, quite a bit taller than the tallest boy from
the preceding year. Clearly, the tallest boy, over repeated years, is a random
variable. What does its distribution look like?

This is where the replicate function in R comes in.
Suppose I replicate 10 years.

> set.seed(12345)

> replicate(10, max(rnorm(400, 70, 3)))

[1] 78.24 79.99 77.37 79.87 78.28 77.79 78.27 78.11 77.78 77.29

I can use R to simulate 100,000 years of high school classes in just a few
seconds. I can store the result in a variable called tallest.boy. Here we go

2

> set.seed(12345)

> tallest.boy <- replicate(1e+05, max(rnorm(400, 70, 3)))

(This took 4 seconds on my computer.)
Now we can examine the mean, standard deviation, and distributional shape

easily.

> mean(tallest.boy)

[1] 78.91

> sd(tallest.boy)

[1] 1.133

> hist(tallest.boy, breaks = 100, xlab = "Height of Tallest Boy (n = 400)")

Histogram of tallest.boy

Height of Tallest Boy (n = 400)

F
re

qu
en

cy

76 78 80 82 84 86

0
10

00
20

00
30

00

We can see that the distribution is skewed, with a mean of a little less than
6 feet 7 inches.

3

We could create a whole table of values of the average height of the tallest
boy as a function of class size. We’d find that larger classes have tallest boys
who tend to be taller than the tallest boy from smaller classes.

Let’s explore that notion with a second question.

High school A has 400 boys, while high school B has only 100. What percent-
age of the time will the tallest boy from high school A be taller than the tallest
boy from high school B if the two high schools draw independently and randomly
from the same population?

With this problem we introduce a technique for extending the usefulness of
a simulation. Again, let’s break the problem down. Let’s generate one class of
size 400 and another of size 100 and select the tallest boy from each.

> set.seed(12345)

> max(rnorm(400, 70, 3))

[1] 78.24

> max(rnorm(100, 70, 3))

[1] 76.72

we can see that the larger class wins this time. There are several ways we
can proceed to now examine 100,000 pairs of classes. One way is to store all the
data from both classes, then do a side-by-side comparison.

> set.seed(12345)

> A <- replicate(1e+05, max(rnorm(400, 70, 3)))

> B <- replicate(1e+05, max(rnorm(100, 70, 3)))

> A.wins <- A > B # comparison via logical expression

> head(A.wins, 15) # first 15 years

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE

[12] TRUE FALSE FALSE TRUE

The statement A.wins <- A > B examines the expression A > B. This eval-
uates to TRUE if A is greater than B, otherwise it evaluates to FALSE.

The neat part is that TRUE and FALSE are coded internally as 1 and 0, so
taking the mean of the A.wins variable gives you the proportion of the time the
larger high school had the tallest boy.

> mean(A.wins)

[1] 0.8025

Since this is a binomial proportion, we can set confidence limits as well, using
the technique discussed in the Cases handout. (Actually, as we discover later in
this exercise, there is a better way. . .)

An additional point is that, if you just need an answer in a hurry, you can
write the whole problem in one line!

4

> set.seed(12345)

> mean(replicate(1e+05, max(rnorm(400, 70, 3))) > replicate(1e+05, max(rnorm(100,

+ 70, 3))))

[1] 0.8025

Question 1. Suppose that intelligence is one-dimensional, measured by IQ,
and you are very smart. You have an IQ of 150, and the distribution of IQ
scores in the general population is normal with a mean of 100 and a standard
deviation of 15. If you walk into a room consisting of 25 people who were sampled
independently and at random from the general population, what is the probability
that you are the smartest person in the room?

Question 2. So how big would the number of people in the room have to be
before the probability that you are the smartest person in the room got down to
about 0.50?

Question 3. You throw two fair dice. What is the probability that you throw
doubles? Write a simulation program to estimate this probability, then compare
it to the true probability.

3 Statistical Assumptions, Robustness, and Monte
Carlo Assessment of Error Rates

In the preceding section, we learned a neat trick for calculating the probability
of an event happening. Code the event as a TRUE-FALSE variable, replicate it
many times, and compute the mean of the outcomes.

This approach is widely utilized in Monte Carlo investigations of the empiri-
cal rejection rates for statistical tests, and empirical coverage rates for confidence
intervals. We speak of the nominal alpha of a test when we refer to the planned
significance level. Since many tests are based on asymptotic distribution theory,
the actual alpha may be quite different from the nominal alpha.

In a similar vein, the actual proportion of times a confidence interval“covers”
a parameter may be either higher or lower than the nominal confidence level.

Let’s look at an example of this. In class, we learned a basic technique for
constructing a confidence interval on a single proportion. This technique works
pretty well if N is large and p is not to far from 0.50, or, more generally, if Np
and N(1 − p) are both greater than 5.

This confidence interval, discussed in the Cases handout, is constructed as

p̂± Z1−α/2 ×
√
p̂(1 − p̂)

n

So if we observe a sample proportion of p̂ = 0.65 based on n = 100, a 95%
confidence interval would be constructed as

0.65 ± 1.96 ×
√

0.65(0.35)

100

5

An R function to compute this interval takes only a couple of lines:

> simple.interval <- function(phat, n, conf) {

+ z <- qnorm(1 - (1 - conf)/2)

+ dist <- z * sqrt(phat * (1 - phat)/n)

+ lower = phat - dist

+ upper = phat + dist

+ return(list(lower = lower, upper = upper))

+ }

> simple.interval(0.65, 100, 0.95)

$lower

[1] 0.5565

$upper

[1] 0.7435

The approach in the preceding example does not directly compensate for the
fact that the standard error is estimated from the same data used to estimate
the sample proportion. E.B. Wilson’s approach asks, which values of p are
barely far enough away from p̂ so that p̂ would reject them. These points are
the endpoints of the Wilson confidence interval.

The Wilson approach requires us to solve the equations.

z =
p̂− p√

p(1 − p)/n
(1)

and

−z =
p̂− p√

p(1 − p)/n
(2)

Be careful to note that the denominator has p, not p̂. If we square both of the
above equations, and simplify by defining θ = z2/n, we arrive at

(p̂− p)2 = θp(1 − p) (3)

This can be rearranged into a quadratic equation in p, which we learned how
to solve in high school algebra with a simple if messy formula. The solution can
be expressed as

p =
1

1 + θ

(
p̂+ θ/2 ±

√
p̂(1 − p̂)θ + θ2/4

)
(4)

We can easily write an R function to implement this result.

> wilson.interval <- function(phat, n, conf) {

+ z <- qnorm(1 - (1 - conf)/2)

+ theta <- z^2/n

+ mult <- 1/(1 + theta)

+ dist <- sqrt(phat * (1 - phat) * theta + theta^2/4)

+ upper = mult * (phat + theta/2 + dist)

+ lower = mult * (phat + theta/2 - dist)

+ return(list(lower = lower, upper = upper))

+ }

> wilson.interval(0.65, 100, 0.95)

6

$lower

[1] 0.5525

$upper

[1] 0.7364

We have identified two different methods for constructing a confidence in-
terval, and the natural question to ask is which method is better. There are a
number of ways of characterizing the performance of confidence intervals. For
example, we can examine how close the actual coverage probability is to the
nominal value. In this case, we can, rather easily, compute the exact coverage
probabilities for each interval, because R allows us to compute exact probabili-
ties from the binomial distribution, and N is small. Therefore, we can

1. Compute every possible value of p̂

2. Determine the confidence interval for that value

3. See whether the confidence interval contains the true value of p

4. Add up the probabilities for intervals that do cover p

> actual.coverage.probability <- function(n, p, conf) {

+ x <- 0:n

+ phat <- x/n

+ probs <- dbinom(x, n, p)

+ wilson <- wilson.interval(phat, n, conf)

+ simple <- simple.interval(phat, n, conf)

+ s <- 0

+ w <- 0

+ for (i in 1:n + 1) if ((simple$lower[i] < p) & (simple$upper[i] > p))

+ s <- s + probs[i]

+ for (i in 1:n + 1) if ((wilson$lower[i] < p) & (wilson$upper[i] > p))

+ w <- w + probs[i]

+ return(list(simple.coverage = s, wilson.coverage = w))

+ }

> actual.coverage.probability(30, 0.95, 0.95)

$simple.coverage

[1] 0.7821

$wilson.coverage

[1] 0.9392

Note that the Wilson interval is close to the nominal coverage level, while
the traditional interval performs rather poorly.

Suppose that we had not realized that the exact probabilities were available
to us. We could still get an excellent approximation of the exact probabilities
by Monte Carlo simulation.

Monte Carlo simulation works as follows:

1. Choose your parameters

7

2. Choose a number of replications

3. For each replication:

(a) Generate data according to the model and parameters

(b) Calculate the test statistic or confidence interval

(c) Keep track of performance, e.g., whether the test statistic rejects, or
whether the confidence interval includes the true parameter

4. Display the results

This “loop and accumulate” strategy is central to most complex Monte Carlo
simulations. Study the code below carefully to see how the accumulator variables
are zeroed out at the beginning, then added to as the for-next loop goes
through all the replications.

In the function below, we simulate 10,000 Monte Carlo replications

> estimate.coverage.probability <- function(n, p, conf, reps, seed.value = 12345) {

+ ## Set seed, create empty matrices to hold results

+ set.seed(seed.value)

+ ## These are counting variables

+ coverage.wilson <- 0

+ coverage.simple <- 0

+ ## Loop through the Monte Carlo replications

+ for (i in 1:reps) {

+ ## create the simulated proportion

+ phat <- rbinom(1, n, p)/n

+ ## calculate the intervals

+ wilson <- wilson.interval(phat, n, conf)

+ simple <- simple.interval(phat, n, conf)

+ ## test for coverage, and update the count if successful

+ if ((simple$lower < p) & (simple$upper > p))

+ coverage.simple <- coverage.simple + 1

+ if ((wilson$lower < p) & (wilson$upper > p))

+ coverage.wilson <- coverage.wilson + 1

+ }

+ ## convert results from count to probability

+ s <- coverage.simple/reps

+ w <- coverage.wilson/reps

+ ## return as a named list

+ return(list(simple.coverage = s, wilson.coverage = w))

+ }

>

>

> ## Try it out

> estimate.coverage.probability(30, 0.95, 0.95, 10000)

$simple.coverage

[1] 0.7864

$wilson.coverage

[1] 0.9397

To get a better idea of the overall performance of the two interval estimation
methods whenN = 30, we might examine coverage rates as a function of p. With

8

our functions written, we are all set to go. We simply set up a vector of p values,
and store the results as we go.

Here is some code:

> ## set up empty vectors to hold 50 cases

> p <- matrix(NA, 50, 1)

> wilson <- matrix(NA, 50, 1)

> simple <- matrix(NA, 50, 1)

> ## step from .50 to .99, saving results as we go

> for (i in 1:50) {

+ p[i] <- (49 + i)/100

+ res <- actual.coverage.probability(30, p[i], 0.95)

+ wilson[i] <- res$wilson.coverage

+ simple[i] <- res$simple.coverage

+ }

Below, we graph the results, presenting coverage probability as a function of
p. The performance advantage of the Wilson interval when p gets close to 1 is
obvious.

> plot(p, wilson, type = "l", col = "blue", ylim = c(0.1, 0.99), xlab = "Population Proportion p",

+ ylab = "Actual Coverage Probability", main = "Confidence Interval Performance (N = 30)")

> lines(p, simple, col = "orange")

>

> abline(0.95, 0, lty = 2, col = "red")

> legend(0.6, 0.6, c("Wilson Interval", "Simple Interval"), col = c("blue",

+ "orange"), lty = c(1, 1))

9

0.5 0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Confidence Interval Performance (N = 30)

Population Proportion p

A
ct

ua
l C

ov
er

ag
e

P
ro

ba
bi

lit
y

Wilson Interval
Simple Interval

Question 4. The two-sample t test assumes that population variances are
equal. It is not robust to violations of this assumption if the sample sizes are
unequal. To demonstrate this, write a Monte Carlo program to estimate, on the
basis of 10,000 replications, the proportion of times a two-sample t will reject at
the 0.05 significance level, two-tailed, when n1 = 100, n2 = 20, σ1 = 5, σ2 = 15,
and both population means are 0. This is the empirical α.

Question 5. The coins in the box. Use Monte Carlo methods to answer the
following question. There is a box with three drawers. Each drawer has two
sides. One drawer has a gold coin in each side. One drawer has a silver coin
in each side. The third drawer has a gold coin in one side and a silver coin
in the other. You are blindfolded. A drawer is selected at random. You then
choose a side at random and the coin in that side is revealed to be gold. What
is the probability that given such a situation, the coin in the other side of the
drawer is gold? Choose a clever representation of this game, and play it at least
10,000 times, keeping track of what happens. Note that you don’t have to have a

10

physical representation of the box. You can just code it as a list of numbers and
solve this problem in a few lines of code if you are careful!! Note: Legend has it
that duels were actually fought over this problem. Some people believed that the
probability is 1/2, while others thought it was 2/3.

11

