
Deriving Classic Results in Linear Regression with
The Algebra of Variances and Covariances

Earlier in the course, we derived some key results regarding the variances and
covariances of linear transformations and linear combinations. In this hand-
out, we revisit these results and re-express them as a succinct set of rules for
manipulating and deriving variances and covariances.

Recall that early in the course, we first pointed out that if Y is a linear
transformation of X, i.e., Y = aX + b, then S2

Y = a2S2
X . There’s a bit more to

this result than meets the eye at first, because we also proved that if Y = aX+b,
dy = adx, that is, additive constants never affect deviation scores, so of course
they cannot affect variances or covariance, which are functions of deviation
scores.

Consequently, we can state our first rules of covariance algebra. Let SA,B
stand for the covariance between variables A and B. We recall that the variance
of any variable is its covariance with itself, so

S2
A = SA,A (1)

We developed a general heuristic rule for deriving variances and covariances
of linear transformations and linear combinations. That rule, in a nutshell, says

1. Write the expression(s) whose variance(covariance) you wish to derive.

2. Take the square(cross-product) of the expression(s).

3. Apply the following conversion rules:

(a) Constants that are multiplied by variables are left unchanged, but
lone additive or subtractive constants may be removed prior to pro-
cessing the expression

(b) Any squared variable is converted to the variance of that variable.

(c) Any product of two variables is converted to the covariance of those
variables.

(d) Any expression not containing either the square of a variable or prod-
uct of two variables is dropped.

These 4 examples demonstrate the essential characteristics of the heuristic
rules:

1. Derive the variance of X+Y . We square X+Y , getting X2 +Y 2 +2XY ,
Applying the conversion rule, we get S2

X + S2
Y + 2SX,Y .

2. Derive the covariance of X +Y and X −Y . Taking the cross-product, we
get (X + Y )(X − Y ) = X2 − Y 2. Applying the conversion rule, we get
S2
X − S2

Y .
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3. Derive the variance of aX + b. We can proceed in two distinct ways. In
one approach, we drop the b first, since it is a lone additive constant.
We then square aX, obtaining a2X2, and then we apply the conversion
rule, getting a2S2

X . Alternatively, we could square the original expression,
getting (aX + b)2 = a2X2 + b2 + 2abX. Applying the conversion rule, we
drop the last two terms, which do not have either the square of a variable
or the product of two variables, and we end up with a2S2

X again.

4. Derive the covariance of aX + b and cY . Taking the product of the two
expressions, we get (aX+b)(cY ) = acXY +bcY . Applying the conversion
rule, we drop the second term, because it does not have the square of a
variable or the product of two variables. The result is thus acSX,Y .

The results of the heuristic rule may be expressed very succinctly with the
following notational variation. For variables X and Y and constants a, b, c, d,
we have the following:

1.
SaX+b,cY+d = SaX,bY = abSX,Y (2)

2.
S2
aX+b = S2

aX = a2S2
X (3)

3.
S2
aX+bY = a2S2

X + b2S2
Y + 2abSX,Y (4)

4.
SaX+bY,cX+dY = acS2

X + bdS2
Y + (bc+ ad)SX,Y (5)

The above notation and the results it describes can be used to produce very
succinct derivations of some classic results in linear regression.

Consider the simple least-squares linear regression setup for predicting Y
from X. The key equations are

Yi = β0 + β1Xi + Ei (6)

= Ŷi + Ei (7)

where, of course
Ei = Yi − Ŷi (8)

and Ŷi is defined as
Ŷi = β1Xi + β0 (9)

The values of β1 and β0 that minimize the sum of squared residuals are

β1 = rY,X
SY
SX

=
SY,X
S2
X

(10)
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and
β0 = Ȳ − β1X̄ (11)

We’ll now prove the results given in the lecture notes.
First, prove that the variance of the predicted scores is given by

S2
Ŷ

= r2X,Y S
2
Y (12)

Here is the succinct proof. First, via substitution, we write

S2
Ŷ

= S2
β1X+β0

(13)

We then apply the above algebraic results, beginning by dropping the con-
stant β0.

S2
β1X+β0

= S2
β1X = β2

1S
2
X (14)

Next, we simply substitute Equation 10, obtaining

β2
1S

2
X =

(
rY,X

SY
SX

)2

S2
X = r2Y,X

S2
Y

S2
X

S2
X = r2Y,X

S2
Y

��ZZS
2
X
�
�@
@S
2
X = r2Y,XS

2
Y (15)

The second result we seek to prove is that predicted and error scores are
always uncorrelated, i.e.,

SŶ , E = 0 (16)

This result falls out directly from substitution. The key is to choose the more
opportune version of the formula for β1. We start with a direct substitution:

SŶ , E = Sβ1X+β0, Y−β1X−β0
(17)

Next we drop the additive constants

Sβ1X+β0, Y−β1X−β0
= Sβ1X, Y−β1X (18)

From here, the manipulations involve straightforward (if slightly messy) sub-
stitution of definitions:

Sβ1X, Y−β1X = β1SX,Y − β2
1S

2
X (19)

= β1SY,X − β2
1S

2
X (20)

=
SY,X
S2
X

SY,X −
(
SY,X
S2
X

)2

S2
X (21)

=
SY,X
S2
X

SY,X −
S2
Y,X

S4
X

S2
X (22)

=
S2
Y,X

S2
X

−
S2
Y,X

S2
X

(23)

= 0 (24)
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Finally, we show that S2
E = (1−r2X,Y )S2

Y . Note that we have just shown that

Ŷ and E have a zero covariance. Since Y = Ŷ + E, this immediately implies

S2
Y = S2

Ŷ+E
= S2

Ŷ
+ S2

E +
��
�HHH

2SŶ ,E = S2
Ŷ

+ S2
E (25)

Using the previous result for S2
Ŷ

, we get

S2
Y = S2

Ŷ
+ S2

E = r2X,Y S
2
Y + S2

E (26)

By subtraction, this implies that

S2
E = S2

Y − r2X,Y S
2
Y = (1 − r2X,Y )S2

Y (27)

We have, therefore, completed the proof of the three results in the lecture
notes.

In class, we then went on to show that these results imply that r2X,Y is the
proportion of total squared error that is eliminated by adding the term β1X to
the regression equation Ŷi = β0.

Specifically, suppose we did not know X and had to predict the Y scores
with the equation Ŷ = β0. The best β0, the one that minimizes the sum of
squared errors, can be shown (we proved the result in class) to be Ȳ , the sample
mean of the Y scores. In that case, the sum of squared errors is simply the sum
of squared deviations of the Y scores around their mean, which may be written

n∑
i=1

(Yi − Ŷ )2 =

n∑
i=1

(Yi − β0)2 =

n∑
i=1

(Yi − Ȳ )2 = (n− 1)S2
Y (28)

On the other hand, the sum of squared errors when the full regression equa-
tion is used is (n − 1)S2

E = (n − 1)(1 − r2X,Y )S2
Y . The amount saved is the

difference between these two values, i.e., (n − 1)S2
Y − (n − 1)(1 − r2X,Y )S2

Y =

(n − 1)r2Y,XS
2
Y . The proportion of the maximum squared error saved by using

X is thus
(n− 1)r2X,Y S

2
Y

(n− 1)S2
Y

= r2X,Y (29)

To illustrate the above results, let’s analyze a small artificial data set. We
create two variables, X and

> set.seed(12345)

> X <- rnorm(10)

> Y <- sqrt(1/2)*X + sqrt(1/2)*rnorm(10)

> plot(X,Y)
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Fitting the simple linear regression model, we get

> fit.1 <- lm(Y ~ X)

> plot(X,Y)

> summary(fit.1)

Call:

lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

-0.67730 -0.38568 -0.05055 0.09258 1.25025

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1758 0.1950 0.902 0.3936

X 0.5083 0.2489 2.042 0.0754 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6076 on 8 degrees of freedom

Multiple R-squared: 0.3427, Adjusted R-squared: 0.2605

F-statistic: 4.171 on 1 and 8 DF, p-value: 0.07541
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> abline(fit.1,col="red")
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The predicted and residual scores can be obtained directly from the fit object
by use of the predict() and residuals functions. Below, we calculate the
predicted and error scores, then show that their variances and covariance match
the theory we just derived. The covariance between Ŷ and E is within rounding
error of zero.

> Yhat <- predict(fit.1)

> E <- residuals(fit.1)

> var(Yhat)

[1] 0.1710815

> r.YX <- cor(Y,X)

> r.YX^2 * var(Y)

[1] 0.1710815

> var(E)

[1] 0.3281642

> (1 - r.YX^2) * var(Y)
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[1] 0.3281642

> cov(Yhat,E)

[1] -4.635604e-17

> data <- cbind(Y,X,Yhat,E)

> data

Y X Yhat E

1 0.33183179 0.5855288 0.47344529 -0.14161350

2 1.78670190 0.7094660 0.53644850 1.25025340

3 0.18478436 -0.1093033 0.12022887 0.06455549

4 0.04717766 -0.4534972 -0.05474133 0.10191899

5 -0.10227913 0.6058875 0.48379456 -0.58607369

6 -0.70785358 -1.8179560 -0.74836101 0.04050743

7 -0.18120246 0.6300986 0.49610222 -0.67730467

8 -0.42975242 -0.2761841 0.03539539 -0.46514780

9 0.59153223 -0.2841597 0.03134099 0.56019125

10 -0.43882927 -0.9193220 -0.29154238 -0.14728689

The sum of squared errors when using the full regression equation is

> SS.full <- sum(E^2)

> SS.full

[1] 2.953478

Now suppose we fit a model with only an intercept

> fit.2 <- lm(Y ~ 1)

> SS.intercept.only <- sum(residuals(fit.2)^2)

> SS.intercept.only

[1] 4.493211

The proportion of squared error saved is calculated below, and exactly
matches r2Y X .

> (SS.intercept.only - SS.full)/ SS.intercept.only

[1] 0.34268

> r.YX^2

[1] 0.34268
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As a final comment, I should note that there are notational variations of
the algebra of variances and covariances that you will encounter. One obvious
variation is to use a var(A) operator instead of S2

A, and a cov(A,B) operator in
place of SA,B . So, for example, we could write

The results of the heuristic rule may be expressed very succinctly with the
following notational variation. For variables X and Y and constants a, b, c, d,
we have the following:

1.
cov aX + b, cY + d = cov(aX, bY ) = ab cov(X,Y ) (30)

2.
var(aX + b) = var(aX) = a2 var(X) (31)

3.
var(aX + bY ) = a2 var(X) + b2 var(Y ) + 2ab cov(X,Y ) (32)

4.

cov(aX+bY, cX+dY ) = ac var(X)+bd var(Y )+(bc+ad) cov(X,Y ) (33)

There is a real advantage to this notational variation. Since the algebra
of variances and covariances holds for random variables as well as for lists of
numbers, this latter notation can be employed identically for discussions of
sample statistics or population results. Another advantage is that it can be
directly imported into R.
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